• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microwave spectroscopy of CH←3HgX (X = Cl, CN) and SiF←3X (X = Cl, I) and the internal rotors CF←3SH, CH←3B(OH)←2

Rego, Christopher Ashok January 1989 (has links)
No description available.
2

Molecular bonding in product engineering

Thote, Amol Janardan, Gupta, Ram B. January 2005 (has links)
Dissertation (Ph.D.)--Auburn University, / Abstract. Vita. Includes bibliographic references.
3

Microwave Spectroscopic and Theoretical Investigations on Inter/Intra Molecular Bonding

Shahi, Abhishek January 2014 (has links) (PDF)
The importance of weak interactions between molecules to life and all parts of science and engineering is unquestionable and there have been an enormous interest in such interactions. Among all the weak interactions, hydrogen bonding is the most popular and it has enjoyed the most attention of the scientific community. Halogen bonding is gaining more popularity in the recent time, as its importance to biological molecules and crystal engineering has been recognized. In this work, a Pulsed Nozzle Fourier Transform Microwave spectrometer has been used to study the rotational spectra of molecules and hydrogen bonded complexes. Structural information is obtained from the rotational spectra. Ab initio electronic structure, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) theoretical methods have been used to characterize the weak intermolecular interactions, including hydrogen bonding, halogen bonding and lithium bonding. In Chapter I, introduction to weak interaction is discussed. A brief introduction of different experimental and theoretical methods is presented. Chapter II discusses in detail about the different methods used to investigate weak interaction, both experimentally and theoretically, in this work. In our lab, we use Pulsed Nozzle Fourier Transform Microwave spectrometer to determine the complexes spectra and structures. We generate MW radiation with the help of electronic devices and use Balle-Flygare cavity where molecular interaction takes place. We inject the sample inside the cavity in form of supersonic molecular beam through a pulsed nozzle, parallel to MW radiation. The detailed instrumental discussion about MW spectrometer has been done in this Chapter. We extensively use theoretical methods to probe weak bonding and characterize them. Ab initio and DFT calculations are used to optimize the structure of the complexes and predict their rotational spectra. Atoms in Molecules theory and Natural Bond Orbital theory are then used with the ab initio wave functions to understand the weak interactions in depth. Discussion about these methods and software used for the analysis will also be discussed. In Chapter III, rotational spectrum of Hexafluoroisopropanol (HFIP) monomer is presented. HFIP is an interesting molecule as it offers many possibilities as hydrogen bond donor and acceptor. It has the OH group which can both accept/donate a hydrogen bond and in addition it has a very acidic CH group. It is the only solvent that can dissolve polyethylene terephthalate, a normally difficult-to-dissolve polymer, and clearly it has unique interactions with this difficult to solve polymer. We have recorded and fitted rotational spectra of five different isotopologues of HFIP which helped us in determining its accurate structure. Though, it can exist in synclinical and antiperiplanar conformers, only the later has been detected in our molecular beam spectrometer. This happens to be the global minimum structure of HFIP. Combination of experimental observations and ab initio calculations provided many evidences which confirmed the presence of antiperiplanar conformer, experimentally. Since, the rotational constants for both conformers were very close, it was always challenging to pick up one conformer as experimentally observed structure. A prototype molecule, hexafluoroisobutene (HFIB) shows doubling of rotational transitions due to tunnelling/counter rotation of the two CF3 groups through a small barrier. Interestingly, such motion has no barrier in HFIP and hence no splitting in transitions was observed. Potential energy surface calculated for counter-rotation of the two CF3 groups is consistent with this observation. This barrier is different from eclipsed-staggered exchange barrier, observed by 60 counter rotation of both terminal CF3 groups, for which the barrier height is very large and tunnelling cannot occur. The origin/lack of the small barrier in HFIB/HFIP has been explored using Natural Bond Orbital (NBO) method which helped in understanding intramolecular bonding in these molecules. Along with HFIB, other prototype molecules were also considered for the analysis e.g. hexafluoroacetone, hexafluoroacetone imine, hexafluoroisobutane, hexafluoroisopropylamine. In the last section of this Chapter, we have discussed the generalized behaviour of molecules which have CF3-C-CF3 groups. In Chapter IV, rotational spectrum of HFIP•••H2O complex is presented. Aqueous solution of HFIP stabilizes α-helical structure of protein, a unique property of this solvent. The main objective of this Chapter is understanding the interaction between HFIP and H2O. Microwave spectrum of HFIP•••H2O was predicted and recorded. Three isotopologues were investigated. Though, this complex could in principle have several structural conformers, detailed ab initio calculations predicted two conformers and only one was observed. Though, the rotational constants for both structures were somewhat similar, lack of a dipole transitions, larger intensity of b-dipole transitions over c-dipole transitions and isotopic substitution analysis positively confirm the structure in which HFIP acts as the hydrogen bond donor. The linear O-H•••O hydrogen bond in HFIP-H2O complex is significantly stronger than that in water dimer with the H•••O distance of 1.8 Å. The other structure for this complex, not found in experiment is cyclic with both C-H•••O and O-H•••O hydrogen bonds, both of which are bent with H•••O distances in the range 2.2-2.3 Å. Both AIM and NBO calculations have been used to characterize the hydrogen bond in this complex. In Chapter V, a comprehensive study on hydrogen bonding, chlorine bonding and lithium bonding have been done. A typical hydrogen bonded complex can be represented as A•••H-D, where A is the acceptor unit and H-D is the hydrogen bond donor unit. Many examples are known in literature, both experimentally and theoretically, in which the A-H-D bond angles are not linear. Deviation from linearity also results in the increase in A•••H bond lengths, as noted above for the two structures of HFIP•••H2O complex. Though this has been known for long, the distance between A and D being less than the sum of their van der Waals ‘radii’ is still used as a criterion for hydrogen bonding by many. Our group has recently shown the inappropriateness of van der Waals ‘radii’ and defined hydrogen bond ‘radii’ for various donors, DH and A. A strong correlation of DH hydrogen bond ‘radii’ with the dipole moment was noted. In this Chapter, we explored in detail the angular dependence of hydrogen bond ‘radii’. Electron density topology around DH (D = F, Cl and OH) has been analyzed in detail and shown to be elliptical. For these molecules, the two constants for H atom treated as an ellipse have been determined. It is hoped that these two constants will be used widely in analyzing and interpreting H•••A distances, as a function of D-H•••A angles, rather than one ‘radius’ for H and acceptor atoms. In Chapter VI, Detailed analysis and comparisons among hydrogen bond, chlorine bond and lithium bond, have been done. Hydrogen can be placed in group 1 as well as group 17 of the periodic table. Naturally, lithium bonding and halogen bonding have been proposed and investigated. There have been numerous investigations on the nature of hydrogen bonding and the physical forces contributing to it. In this Chapter, a total of one hundred complexes having H/Cl/Li bonding have been investigated using ab initio, AIM and NBO theoretical methods. Various criteria proposed in the literature have been examined. A new criterion has been proposed for the characterization of closed shell (ionic/electrostatic) and open shell (covalent) interactions. It has been well known that the D-H bond weakens on the D-H•••A hydrogen bond formation and H•••A bond acquires a fractional covalency. This Chapter shows that for D-Li•••A complexes, the ionicity in D-Li is reduced as the Li•••A bond is formed This comprehensive investigation of H/Cl/Li bonding has led us to propose a conservation of bond order, considering both ionic and covalent contributions to both D-X and X•••A bonds, where DX is the X-bond donor and A is the acceptor with X = H/Cl/Li. Hydrogen bond is well understood and its definition has been recently revised [Arunan et al. Pure Appl. Chem., Vol. 83, pp. 1619–1636, 2011]. It states “The X–H•••Y hydrogen bond angle tends toward 180° and should preferably be above 110°”. Using AIM theory and other methods, this fact is examined and presented in Appendix A. In second part of appendix A, a discussion about calling H3¯ complex as trihydrogen bond and its comparison with FHF¯ complex, is presented. In Appendix B, there is tentative prediction and discussion about the HFIP dimer. Condense phase studies show that HFIP have strong aggregation power to form dimer, trimer etc. During, HFIP monomer study, we have unassigned lines which are suspected to be from HFIP dimer. These are tabulated in the Appendix B as well.
4

Réalisation d'un micro-capteur optofluidique pour la mesure déportée de radionucléides / Manufacture of an optofluidic micro-sensor for remote measurements of radionuclides

Allenet, Timothée 20 June 2018 (has links)
L’exploitation de l’énergie nucléaire pour la production d’électricité présente un défi de gestion des e˜uents radiotoxiques pour les générations présentes et futures. Face à ce constat, la communauté des chimistes recherche continument à améliorer les solutions de traitement et de recyclage du combustible usé. Dans le contrôle de ces procédés, les opérations d’analyse jouent un rôle primordial. La miniaturisation des procédés est un des enjeux principaux de la recherche en sûreté nucléaire, dans un e˙ort de réduction des risques, des délais et des coûts des activités de laboratoire. Dans ce contexte, les travaux présentés ici sont issus d’une collaboration entre le CEA de Marcoule et l’IMEP-LAHC et traitent de la mise au point d’un microsystème optofluidique sur verre, adapté à la mesure de concentration de plutonium (VI) en acide nitrique. Une source de lumière sonde est confinée dans un guide d’onde obtenu par échange d’ions et interagit par onde évanescente avec un canal microfluidique. La raie d’absorption à 832 nm du Pu(VI) dans la solution à analyser devient donc observable dans le spectre de la lumière après une certaine longueur d’interaction. Un des enjeux principaux est de fabriquer un capteur très robuste, fonctionnel en boîte à gants. L’assemblage du dispositif est e˙ectué par collage moléculaire avec un procédé permettant d’atteindre une énergie de surface > 2, 5 J·m2 suÿsante à garantir la tenue du dispositifs à des pressions testées jusqu’à 2 bars dans les canaux. Les fonctions optiques et fluidiques du dispositif sont complètement interfacées avec des fibres optiques et des capillaires fluidiques. Des mesures spectrales d’une solution de plutonium (VI) en acide nitrique ont permis de vérifier la compatibilité de la solution technologique abordée pour la manipulation d’acides forts et la résistance à l’irradiation. Le système présente une limite de détection de 1,6·10−2 mol·L−1 Pu(VI) pour un volume sondé inférieur à 1 nano-litre, au sein d’un microcanal de 21 micro-litres. Une structure permettant d’optimiser la sensibilité du capteur ainsi que le volume du canal est étudiée en perspective du travail de thèse, afin d’atteindre les performances équivalentes à des outils commerciaux pour des volumes sondés de l’ordre de quelques nano-litres. / .The use of nuclear energy for electricity production presents an important concern with radiotoxic waste management for present and future generations. In view of this fact, the chemists’ community has been searching for solutions to treat and recycle nu-clear fuel. The miniaturization of chemical processes is extensively sought out nowerdays, in an attempt to reduce laboratory acivity risks, delays and costs. The researched ana-lytical innovation requires subsequent development of appropriate analysis tools. In this respect, the work presented here addresses the development of co-integrated optofluidic micro-systems on borosilicate glass, compatible with nuclear e˜uent analysis constraints. A spectrometric sensor is designed, fabricated, interfaced and characterized in a nuclear environement. An optical waveguide and a microfluidic channel are designed adjacent to one another in order to obtain wide-spectrum absorption spectroscopy measurements by light/fluid evanescent interaction. Both ion-exchange technology and wet-etching tech-nologies were used to create the optical and fluidic planar functions. The device is assem-bled by direct molecular bonding with an optimized protocole which withstands surface energies > 2, 5 J·m2. Sensor optical and fluidic functions are interfaced with fiber optics and fluid capillaries in order for the chip to be used within a plug-and-play detection chain. Spectral measurements of a plutonium(VI) in nitric acid solution have allowed to verify the technological solution’s compatibility with harsh acid manipulation and irra-diation resistance. The system put together for the detection of plutonium(VI) displays a detection limit of 1.6×10−2 mol·L−1 for a probed volume below 1 nano-liter, inside a 21 micro-liter channel. A new sensor design is studied in the thesis work perspectives in order to optimize sensor detection limit and channel volume and reach industrial tools analytical performances with nano-liter sample volumes.
5

Caractérisation de l'amorçage de fissure dans les assemblages collés : application à l'adhérence moléculaire renforcée / Crack initiation characterization in bonding assemblies : application on reinforced molecular bonding technology

Bui, Thanh Quang 08 July 2015 (has links)
L'adhérence moléculaire est une technique d’assemblage basée sur la mise en contact directe de deux surfaces sans utiliser aucune colle ou produit spécifique à l’interface. Une telle opération nécessite que les surfaces à coller soient suffisamment lisses et qu’elles soient suffisamment rapprochées pour provoquer l’adhérence moléculaire. La caractérisation de la tenue mécanique de ce type d’assemblage par des essais mécaniques classiques de type pelage, clivage ou double cisaillement présentent des dispersions de mesures très importantes.Le premier objectif de ce travail concerne la conception et le développement d’un nouvel essai pour l’analyse de l’amorçage de fissure permettant d’obtenir des résultats moins dispersés que les essais classiques notamment pour des colles fragiles de faible épaisseur comme l’adhésion moléculaire. Seul le mode I a été étudié et un montage de type DCB modifié a été proposé pour étudier l’amorçage pour différentes géométries de bord (homogène, concentration de contrainte élevée, …).Le second objectif se propose, en partant des différents résultats expérimentaux obtenues, de comparer des approches (PSC, CC, MZC) qui permettent de prédire l’amorçage de la fissure pour des colles fragiles et en particulier pour l’adhérence moléculaire. L’idée est de proposer une solution simple aux ingénieurs souhaitant prédire la rupture dans un assemblage collé avec une épaisseur de colle tendant vers zéro. / Direct bonding by molecular adhesion is a bonding technique based on joining two surfaces into direct contact without the use of any adhesives or additional material. Such an operation requires the surfaces that are to be bonded to be sufficiently smooth and for them to be sufficiently close together to allow contact to be initiated. Mechanical characterization of this type of assembly with classical mechanical test as for instance wedge test, cleavage test or double shear test present a highly defects sensitivity on mechanical results.The first objective of this work concerns the design and the development of a new test for the analysis of crack initiation in order to obtain results less dispersed than conventional tests particularly for fragile adhesives with small thickness as molecular bonding. Only the mode I was investigated and an experimental device based on modified DBC classical test is proposed to study crack initiation with different edge geometries (homogeneous, high stress concentration).The second objective proposed, in starting from the different experimental results obtained, to compare some approaches (PSC, CC, MZC) to predict crack initiation for fragile adhesives and in particular for molecular bonding. The idea is to propose a simple methodology for engineers in order to predict fracture in an assembly bonded with an adhesive thickness close to zero.
6

Intégration de matériaux semi-conducteurs III-V dans des filières de fabrication silicium avancées pour imagerie proche infrarouge / Integration of III-V semi-conductor alloys above advanced silicon platform for short-wavelength infrared imaging

Le Goff, Florian 09 November 2017 (has links)
Les imageurs à base d’alliage InGaAs sur substrat InP se sont fortement popularisés pour l’imagerie dans le proche infrarouge. La méthode de fabrication de référence est constituée d’une matrice de photodiodes planaires réticulées par diffusion localisée de zinc. Cette approche reste chère du fait d’une méthode d’hybridation individuelle entre circuit de lecture CMOS et circuit de détection. Afin de réaliser des imageurs proche infrarouge bas coût ou de grand format, cette méthode d’hybridation doit donc être revisitée. La solution présentée durant cette thèse est de transférer les structures III-V absorbantes directement sur le circuit de lecture par un collage moléculaire direct suivi d’une fabrication collective des matrices de photodiodes. Cette méthode demande le développement d’une nouvelle architecture pour la connexion électrique au circuit de lecture et la formation de diodes. Elle consiste en la réalisation de via de connexion à partir desquels un dopage localisé est réalisé. On forme alors des diodes circulaires autour de chaque via appelées LoopHoles. Ce dopage dont la température ne doit pas dépasser 400°C est réalisé par diffusion MOVPD. Malgré des phénomènes physiques parasites il a été possible de réaliser dans l’InP et l’InGaAs des jonctions p-n adaptées. Les caractéristiques optoélectroniques de groupes de diodes LoopHoles sur substrat InP et sur matériaux reportés ont ainsi pu être mesurées. / Nowadays short wavelength infrared (SWIR) imaging based on InP/InGaAs photo-diodes is quite popular for uncooled camera. The state of the art technology is a double layer planar heterointerface focal plane array. But, it remains expensive. Its cost comes essentially from the individually hybridization of photo-diodes array with read-out circuit, by the mean of an indium-bumps flip-chip process. We suggest an alternative method for hybridization, in order to lowering the cost and providing a sustainable process to decrease the pixel pitch. It consists in a direct integration by bonding silica of InP/InGaAs/InP structure above a finished read-out circuit (with CMOS technology) and circular diode architecture named “LoopHoles”. This diode consists in via-hole through the III-V materials and bonding silica layer down to top metal layer in the readout circuit for each active pixel. Via-hole is also used to diffuse laterally zinc in III-V layer in order to create p-type doping area. Because of the read-out circuit, temperature of diffusion has to be below 400°C which induces parasitic phenomena’s. We have found that a Hf02 coating on InP surface prevent this degradation while allowing zinc diffusion. We were able to control depth of p-n junction inside InP and InGaAs. We also investigated few steps of the processes like the molecular bonding, via etching and metallization. Finally, we succeeded to produce LoopHole photodiodes on bulk InP and on bonded materials with a high spectral efficiency, low pitch and a lower dark currant of 150 fA at room temperature.

Page generated in 0.1192 seconds