• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design considerations in high-throughput automation for biotechnology protocols

Unknown Date (has links)
In this dissertation a computer-aided automation design methodology for biotechnology applications is proposed that leads to several design guidelines. Because of the biological nature of the samples that propagate in the automation line, a very specific set of environmental and maximum allowed shelf time conditions have to be followed to obtain good yield. In addition all biotechnology protocols require precise sequence of steps, the samples are scarce and the reagents are costly, so no waste can be afforded. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
2

Metabolism of Diadenosine-5ʹ,5ʹʹʹ-P¹,P⁴-tetraphosphate (Ap₄A) in Cultured Mammalian Cells

Baker, Jeffrey C. (Jeffrey Clayton) 12 1900 (has links)
Methodology was developed which allowed the rapid and routine quantitation of subpicomole quantities of diadenosine-5ʹ,5ʹʹʹ-P¹,P⁴-tetraphosphate (Ap₄A) in cultured mammalian cells. This methodology includes the rapid extraction of cellular nucleotides in cold alkali, resolution of Ap₄A from the bulk of cellular materials on a highly specific boronate affinity resin, and quantitation of the dinucleotide in a coupled bioluminescence assay utilizing venom phosphodiesterase and firefly luciferase. The sensitivity and selectivity of this assay is demonstrated and contrasted with previously developed techniques. This assay was used to examine the role of Ap₄A in DNA replication and the cellular stress response.

Page generated in 0.0764 seconds