• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An apparatus for studying interactions between Rydberg atoms and metal surfaces

Carter, Jeffrey David January 2007 (has links)
A system suitable for studying interactions between ⁸⁷Rb Rydberg atoms and metal surfaces has been constructed. This thesis describes the design and construction of the apparatus, and some test results. Atoms in a vapor cell magneto-optical trap are transferred to a macroscopic Ioffe-Pritchard trap, where they will be RF evaporatively cooled and loaded into a magnetic microtrap (atom chip). Confinement of cold clouds at controllable distances (5–200 μm)} from a metal surface is possible. The effects of atom-surface interactions can be studied with Rydberg atom spectroscopy. Some functionality of the apparatus has been demonstrated. Approximately 1.5×10⁷ atoms were loaded into a mirror MOT, and about 6×10⁶ atoms were optically pumped to the |F=2, m_F=2> hyperfine ground state and confined in a macroscopic Ioffe-Pritchard trap. The temperature of the cloud in the trap was 42 ± 5 μK, and the 1/e lifetime is 1–1.5 s. Forced RF evaporation has been used to measure the magnetic field at the trap minimum, but RF evaporative cooling has not yet been demonstrated.
2

An apparatus for studying interactions between Rydberg atoms and metal surfaces

Carter, Jeffrey David January 2007 (has links)
A system suitable for studying interactions between ⁸⁷Rb Rydberg atoms and metal surfaces has been constructed. This thesis describes the design and construction of the apparatus, and some test results. Atoms in a vapor cell magneto-optical trap are transferred to a macroscopic Ioffe-Pritchard trap, where they will be RF evaporatively cooled and loaded into a magnetic microtrap (atom chip). Confinement of cold clouds at controllable distances (5–200 μm)} from a metal surface is possible. The effects of atom-surface interactions can be studied with Rydberg atom spectroscopy. Some functionality of the apparatus has been demonstrated. Approximately 1.5×10⁷ atoms were loaded into a mirror MOT, and about 6×10⁶ atoms were optically pumped to the |F=2, m_F=2> hyperfine ground state and confined in a macroscopic Ioffe-Pritchard trap. The temperature of the cloud in the trap was 42 ± 5 μK, and the 1/e lifetime is 1–1.5 s. Forced RF evaporation has been used to measure the magnetic field at the trap minimum, but RF evaporative cooling has not yet been demonstrated.
3

Controlling the dynamics of electrons and nuclei in ultrafast strong laser fields

Kling, Nora G. January 1900 (has links)
Doctor of Philosophy / Department of Physics / Itzik Ben-Itzhak / One ultimate goal of ultrafast, strong- field laser science is to coherently control chemical reactions. Present laser technology allows for the production of intense (>10[superscript]13 W/cm[superscript]2), ultrashort ( 5 fs), carrier-envelope phase-stabilized pulses. By knowing the electric field waveform, sub-cycle resolution on the order of 100's of attoseconds (1 as=10[superscript]-18 s) can be reached -- the timescale for electron motion. Meanwhile, the laser field strengths are comparable to that which binds electrons to atoms or molecules. In this intense-field ultrashort-pulse regime one can both measure and manipulate dynamics of strong-field, quantum-mechanical processes in atoms and molecules. Despite much progress in the technology, typical durations for which lasers can be reliably locked to a specific carrier-envelope phase ranges from a few minutes to a few hours. Experiments investigating carrier-envelope phase effects that have necessarily long data acquisition times, such as those requiring coincidence between fragments originating from the same atom or molecule, are thus challenging and uncommon. Therefore, we combined the new technology for measuring the carrier-envelope phase of each and every laser shot with other single-shot coincidence three-dimensional momentum imaging techniques to alleviate the need for carrier-envelope phase stabilized laser pulses. Using phase-tagged coincidence techniques, several targets and laser-induced processes were studied. One particular highlight uses this method to study the recollision process of non-sequential double ionization of argon. By measuring the momentum of the two electrons emitted in the process, we could study their energy sharing. Furthermore, by selecting certain carrier-envelope phase values, and therefore laser pulses with a particular waveform, events with single recollision could be isolated and further analyzed. Another highlight is our studies of carrier-envelope phase effects in the dissociation of the benchmark H[subscript]2[superscript[+] ion beam. Aided by near-exact quantum mechanical calculations, we could identify interfering pathways which lead to the observed spatial asymmetry. These and other similar experiments are described in this thesis as significant steps toward their ultimate control.

Page generated in 0.0785 seconds