• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imaging laser-induced fragmentation of molecular beams, from positive to negative molecules

Berry, Benjamin January 1900 (has links)
Doctor of Philosophy / Department of Physics / Itzhak Ben-Itzhak / The use of ultrafast lasers allows one to study and even control quantum mechanical systems on their natural timescales. Our aim is to study the fragmentation of small molecules in strong laser fields as a means to gain understanding of molecular dynamics and light-matter interactions. Our research group has utilized fast, positively charged molecular ion beams as targets to study and control fragmentation by strong laser fields. This approach allows for detection of all molecular fragments including neutrals, and a coincidence three-dimensional momentum imaging technique is used to characterize the fragmentation. A natural extension of these types of studies is to expand the types of molecular systems that can be studied, from positively charged molecules to neutral and negatively charged molecules. To that end, the primary technical development of this dissertation involved the generation and use of fast, negatively charged molecular beams. Using fast molecular anion beams as targets allows for the study of fragmentation in which all fragments are neutral. As a demonstration, we employ this capability to study F2- dissociation and photodetachment. The dissociation pathways are identified and used to evaluate the initial vibrational population of the F2- beam. The role of dissociation in photodetachment is also explored, and we find that it competes with other dissociative (F+F) and non-dissociative (F2) photodetachment mechanisms. Also highlighted are studies of fragmentation of LiO-, in which the dissociation into Li+O- fragments provides information about the structure of Li O-, including the bond dissociation energy, which was found to be larger than values based on theory. Studies of the autodetachment lifetimes of Li O- were also performed using a pump-probe technique. Additional experimental advancements have made successful pump-probe studies of the ionization of HD+ and Ar2+ possible. Enhancement in the ionization of dissociating HD+ and Ar2+ was observed at surprisingly large internuclear separation where the fragments are expected to behave like separate atoms. The analysis methods used to quantify this enhancement are also described. Finally, the production of excited Rydberg D* fragments from D2 molecules was studied utilizing a state-selective detection method. The carrier-envelope phase dependence of D* formation was found to depend on the range of excited final states of the atomic fragments. We also measured the excited state population of the D* fragments. Together, the studies presented in this work provide new information about fragmentation of positive, negative, and neutral molecules in strong laser fields, and the experimental developments serve as building blocks for future studies that will lead to a better understanding of molecular dynamics.
2

Controlling the dynamics of electrons and nuclei in ultrafast strong laser fields

Kling, Nora G. January 1900 (has links)
Doctor of Philosophy / Department of Physics / Itzik Ben-Itzhak / One ultimate goal of ultrafast, strong- field laser science is to coherently control chemical reactions. Present laser technology allows for the production of intense (>10[superscript]13 W/cm[superscript]2), ultrashort ( 5 fs), carrier-envelope phase-stabilized pulses. By knowing the electric field waveform, sub-cycle resolution on the order of 100's of attoseconds (1 as=10[superscript]-18 s) can be reached -- the timescale for electron motion. Meanwhile, the laser field strengths are comparable to that which binds electrons to atoms or molecules. In this intense-field ultrashort-pulse regime one can both measure and manipulate dynamics of strong-field, quantum-mechanical processes in atoms and molecules. Despite much progress in the technology, typical durations for which lasers can be reliably locked to a specific carrier-envelope phase ranges from a few minutes to a few hours. Experiments investigating carrier-envelope phase effects that have necessarily long data acquisition times, such as those requiring coincidence between fragments originating from the same atom or molecule, are thus challenging and uncommon. Therefore, we combined the new technology for measuring the carrier-envelope phase of each and every laser shot with other single-shot coincidence three-dimensional momentum imaging techniques to alleviate the need for carrier-envelope phase stabilized laser pulses. Using phase-tagged coincidence techniques, several targets and laser-induced processes were studied. One particular highlight uses this method to study the recollision process of non-sequential double ionization of argon. By measuring the momentum of the two electrons emitted in the process, we could study their energy sharing. Furthermore, by selecting certain carrier-envelope phase values, and therefore laser pulses with a particular waveform, events with single recollision could be isolated and further analyzed. Another highlight is our studies of carrier-envelope phase effects in the dissociation of the benchmark H[subscript]2[superscript[+] ion beam. Aided by near-exact quantum mechanical calculations, we could identify interfering pathways which lead to the observed spatial asymmetry. These and other similar experiments are described in this thesis as significant steps toward their ultimate control.
3

Quantum control of molecular fragmentation in strong laser field

Zohrabi, Mohammad January 1900 (has links)
Doctor of Philosophy / Department of Physics / Itzhak Ben-Itzhak / Present advances in laser technology allow the production of ultrashort (≲5 fs, approaching single cycle at 800 nm), intense tabletop laser pulses. At these high intensities laser-matter interactions cannot be described with perturbation theory since multiphoton processes are involved. This is in contrast to photodissociation by the absorption of a single photon, which is well described by perturbation theory. For example, at high intensities (≳5×10[superscript]13 W/cm[superscript]2) the fragmentation of molecular hydrogen ions has been observed via the absorption of three or more photons. In another example, an intriguing dissociation mechanism has been observed where molecular hydrogen ions seem to fragment by apparently absorbing no photons. This is actually a two photon process, photoabsorption followed by stimulated emission, resulting in low energy fragments. We are interested in exploring these kinds of multiphoton processes. Our research group has studied the dynamics and control of fragmentation induced by strong laser fields in a variety of molecular targets. The main goal is to provide a basic understanding of fragmentation mechanisms and possible control schemes of benchmark systems such as H[subscript]2[superscript]+. This knowledge is further extended to more complex systems like the benchmark H[subscript]3[superscript]+ polyatomic and other molecules. In this dissertation, we report research based on two types of experiments. In the first part, we describe laser-induced fragmentation of molecular ion-beam targets. In the latter part, we discuss the formation of highly-excited neutral fragments from hydrogen molecules using ultrashort laser pulses. In carrying out these experiments, we have also extended experimental techniques beyond their previous capabilities. We have performed a few experiments to advance our understanding of laser-induced fragmentation of molecular-ion beams. For instance, we explored vibrationally resolved spectra of O[subscript]2[superscript]+ dissociation using various wavelengths. We observed a vibrational suppression effect in the dissociation spectra due to the small magnitude of the dipole transition moment, which depends on the photon energy --- a phenomenon known as Cooper minima. By changing the laser wavelength, the Cooper minima shift, a fact that was used to identify the dissociation pathways. In another project, we studied the carrier-envelope phase (CEP) dependences of highly-excited fragments from hydrogen molecules. General CEP theory predicts a CEP dependence in the total dissociation yield due to the interference of dissociation pathways differing by an even net number of photons, and our measurements are consistent with this prediction. Moreover, we were able to extract the difference in the net number of photons involved in the interfering pathways by using a Fourier analysis. In terms of our experimental method, we have implemented a pump-probe style technique on a thin molecular ion-beam target and explored the feasibility of such experiments. The results presented in this work should lead to a better understanding of the dynamics and control in molecular fragmentation induced by intense laser fields.

Page generated in 0.0875 seconds