• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Reduced Density Matrix Approach to the Laser-Assisted Electron Transport in Molecular Wires

Welack, Sven 30 November 2005 (has links)
The electron transport through a molecular wire under the influence of an external laser field is studied using a reduced density matrix formalism. The full system is partitioned into the relevant part, i.e. the wire, electron reservoirs and a phonon bath. An earlier second-order perturbation theory approach of Meier and Tannor for bosonic environments which employs a numerical decomposition of the spectral density is used to describe the coupling to the phonon bath and is extended to deal with the electron transfer between the reservoirs and the molecular wire. Furthermore, from the resulting time-nonlocal (TNL) scheme a time-local (TL) approach can be determined. Both are employed to propagate the reduced density operator in time for an arbitrary time-dependent system Hamiltonian which incorporates the laser field non-perturbatively. Within the TL formulation, one can extract a current operator for the open quantum system. This enables a more general formulation of the problem which is necessary to employ an optimal control algorithm for open quantum systems in order to compute optimal control fields for time-distributed target states, e.g. current patterns. Thus, we take a fundamental step towards optimal control in molecular electronics. Numerical examples of the population dynamics, laser controlled current, TNL vs. TL and optimal control fields are presented to demonstrate the diverse applicability of the derived formalism.
12

Template directed synthesis of porphyrin nanorings

O'Sullivan, Melanie Claire January 2011 (has links)
This thesis describes supramolecular approaches to porphyrin nanorings. Cyclic porphyrin arrays resemble natural light harvesting systems, and it is of interest to probe the photophysical effects of bending the porphyrin aromatic π-system. A general overview of the synthesis and photophysical properties of porphyrins and their arrays is carried out in Chapter 1. The electronic structure of porphyrins is examined, and how conformational effects in oligomers, such as inter-porphyrin torsional angle and backbone bending influence the π-conjugation pathway. The structures of light harvesting complexes are discussed. Chapter 2 describes the design and synthesis of a complementary 12-armed template designed to coordinate linear porphyrin oligomers in the correct conformation for cyclisation to give a cyclic porphyrin dodecamer. Chapter 3 demonstrates two approaches to a cyclic porphyrin dodecamer ring. Firstly, a classical templating approach using the 12-armed template is described. The limitations of this approach in the quest for larger nanorings are discussed. Vernier templating, which utilises a mismatch in the number of binding sites between a ligand and its receptor is introduced as a general strategy to the synthesis of large nanorings. This is demonstrated by the synthesis of cyclic dodecamer from a linear porphyrin tetramer and a hexadentate template via a figure-of-eight intermediate. The general utility of the Vernier method to large nanorings is explored in Chapter 4 with steps towards the synthesis of a cyclic tetracosamer, consisting of 24 porphyrin subunits. In preliminary experiments, an improved route to the cyclic porphyrin octamer is described. Finally, the photophysical properties of the nanoring series are explored in Chapter 5 as a function of size and conformation. Femtosecond photoluminescence spectroscopy shows that even in cyclic dodecamer, exciton delocalisation over the entire porphyrin backbone occurs on a sub-picosecond timescale, and parallels are drawn with the dynamics of natural light harvesting complexes.
13

On-surface fabrication of functional molecular nanomaterials

Skidin, Dmitry 05 December 2019 (has links)
Polyzyklische organische Moleküle und deren Derivate sind eine Klasse von Nanostrukturen, die wegen diverser möglicher Anwendungen in molekularer und organischer Elektronik viel Aufmerksamkeit in der Wissenschaft erregt haben. Um ihre einzigartigen Eigenschaften in vollem Umfang auszunutzen, muss man das Verhalten von molekularen Systemen auf der Nanoskala verstehen und eine Reihe von Herstellungsverfahren entwickeln. In dieser Arbeit werden molekulare Nanostrukturen durch den Bottom-Up-Ansatz der Oberflächensynthese erzeugt. Als Untersuchungsmethode gilt Rastertunnelmikroskopie (STM) bei tiefen Temperaturen und im Ultrahochvakuum als Werkzeug der Wahl. Drei verschiedene molekulare Systeme werden ausführlich erforscht, mit dem Ziel organische Nanostrukturen mit gewünschten Eigenschaften und atomarer Präzision zu erzeugen. Im ersten Teil dieser Arbeit wird eine Cyclodehydrierungsreaktion erfolgreich für die Synthese von asymmetrischen Starphen verwendet. Es wird dann gezeigt, dass dieses Molekül als unimolekulares NAND-Logikgatter fungieren kann. Dabei wird die Positionierungsänderung der elektronischen Resonanz nach der Zufügung einzelner Goldatome an die Inputs des Moleküls gemessen. Eine Kombination aus atomarer und molekularer Lateralmanipulation mithilfe der Spitze des Rastertunnelmikroskops sowie Rastertunnelspektroskopie wird verwendet, um dieses Verhalten zu demonstrieren. Die steuerbare Verschiebung von molekularen Resonanzen entsteht wegen der asymmetrischen Form des Starphens und wurde theoretisch vorhergesagt. Molekulare Drähte werden im zweiten Teil der Arbeit durch die oberflächenassistierte Ullmann-Kupplung hergestellt. Ihr Baustein besteht aus abwechselnden Donor- und Akzeptorgruppen und wurde speziell vorgesehen, um leitfähige flexible molekulare Drähte herzustellen. Die Leitfähigkeit wird durch Ziehen einzelner Drähten von der Oberflächen mit der STM-Spitze gemessen. Theoretische Berechnungen der komplexen Bandstruktur der molekularen Drähte bestätigen die experimentellen Ergebnisse und unterstützen dabei die Wichtigkeit der Balance zwischen Akzeptor- und Donorgruppen für die Leitfähigkeit der Drähte. Basierend auf diesen Resultaten werden neue Strukturen zur Herstellung vorgeschlagen. Der letzte Teil befasst sich schließlich mit einer unimolekularen Reaktion, die zur Erzeugung einer anomalen Kombination von Pentagon- und Heptagonringen in einem einzelnen organischen Molekül führt. Solche 5-7-Einheiten sind analog zu Stone-Wales-Defekten in Graphen und können elektronische Eigenschaften beachtlich ändern. Die exakte intramolekulare Struktur der Reaktionsprodukte wird durch hochauflösende STM-Bildgebung mit funktionalisierter Spitze eindeutig zugeordnet und zusätzlich durch DFT-Rechnungen bestätigt. / Polycyclic organic molecules and their derivatives present the class of nanostructures that are currently in the focus of scientific research due to their perspectives for the versatile applications in molecular and organic electronics. To exploit their unique properties to full extent, one has to understand the behavior of molecular systems at the nanoscale and to develop a set of fabrication methods. In this work, molecular nanostructures are fabricated using the bottom-up on-surface synthesis approach, which allows precision of the desired products and control over their properties through careful precursors design. To study the reaction flow and the properties of the formed structures, scanning tunneling microscopy (STM) at low temperature and in ultra-high vacuum is the tool of choice. In this work, three molecular systems are studied in detail, with the focus of fabricating atomically precise nanostructures with tailored properties. A cyclodehydrogenation reaction is successfully applied to synthesize an asymmetric starphene molecule in the first part of the work. It is then shown that this molecule can function as a unimolecular NAND logic gate with its response to the attached single Au atoms measured as the position of the electronic resonance. A combination of the atomic and molecular lateral manipulation with the STM tip and scanning tunneling spectroscopy (STS) is used to demonstrate this behavior. The effect of the controllable shifting of the molecular resonances is due to the asymmetric shape of the starphene molecule and was initially predicted theoretically. More complex structures, molecular wires, are presented in the second part of the work by using the surface-assisted Ullmann coupling reaction. The monomer unit, consisting of the alternant donor and acceptor parts, was specifically designed to achieve highly-conductive flexible molecular wires. The conductance is measured by pulling the single wires with the STM tip off the surface. Theoretical calculations of the complex band structure of the wires confirm the obtained results and support the discussion of the importance of the balance between the strength of acceptor and donor units for the conductance of the resultant wires. Based on this, some model structures are proposed. Finally, the last part deals with a unimolecular reaction to create an anomalous combination of pentagon and heptagon rings in a single organic molecule. Such 5-7 moieties are analogous to the Stone-Wales defects in graphene and may significantly alter the electronic properties. The precise intramolecular structure of the reaction products is unambiguously assigned by high-resolution STM imaging with functionalized tips and further confirmed by DFT calculations.
14

Synthesis and characterization of molecules for electronic devices / Synthèse et caractérisation de molécules pour dispositifs électroniques

Herranz-Lancho, Coral 06 December 2013 (has links)
La miniaturisation toujours plus poussée des composants électroniques a atteint une limite en arrivant à l’échelle atomique. Afin de fabriquer des circuits à cette échelle, il est nécessaire de intéresser aux plus petits composants pouvant être intégrés : les molécules individuelles et les groupes d’atomes. Dans cette optique, les molécules de 1,4-bis(pyridin-4-ylethynyl) benzène (BPEB), Dibenzo[a,h]thianthrene (DBTH), de Bis{82,92,152,162,222,232- hexa-(2,4,6-trifluorophenoxy)[g,l,q]-5,10,15,20-tetraazaporphyrino)}[b,e]-benzene (H4Pc2) ont été conçues, synthétisées et caractérisées afin d’en étudier le transport de charges et les changements induits proche de la surface. Des techniques de SPM, tels que le STM, le nc-AFM et l’usage conjoint de l’AFM avec le STM ont été mises en pratique pour analyser les molécules reposant intégralement ou partiellement sur un substrat. L’interprétation des résultats expérimentaux a été faite au moyen de calculs de DFT. De plus, l’autoassemblage en solution de nouvelles mono-phthalocyanines métalliques fluorées, MPc (M= Mg2+, 2H+, Co2+) a été étudié.Tout d’abord, les mesures de conductance mirent en évidence, lors d’expériences de manipulation de fils moléculaires (BEPB), les changements de conformation associés aux transport des électrons à travers les molécules. De plus, le mouvement dit de “retournement papillon” (anglais: butterfly flapping) ayant lieu dans la classe des thianthrènes fut bloqué à basse température grâce à l’interaction avec le substrat. Ce blocage a permit de conduire la première étude stéréochimique de dérivés de thianthrènes chiraux (DBTH). Les analyses STM du DBTH ont montrées que le passage entre deux configurations de DBTH est reproductible et non-destructif. Par ailleurs, le nc-AFM utilisé à résolution sub-moléculaire a constitué un outils important pour réaliser une caractérisation complète et distinguer entre les différents isomères de configuration et de constitution déposés sur une surface. D’autre part, la structure moléculaire de la phthalocyanine binucléaire (H4Pc2) a été confirmée en utilisant un STM en mode “courant constant” et un AFM en mode “fréquence constante”. Ces résultats jettent les bases d’une prochaine étude de transport (travail en cours). En outre, l’étude de l’agrégation dans les molécules de MPc mit en évidence le rôle important de la capacité de coordination de l’atome central de la cavité Pc sur la formation d’agrégat. Finalement, des mesures électrochimiques ont démontrées que l’agrégation moléculaire peut bloquer le nature active de l’atome Co2+. Dans ce travail, il a été clairement montré que le SPM est une technique adéquate pour étudier les changements de conformations et de configurations associés aux courant tunnel d’électrons à travers des molécules, qu’elles soient planaire ou pas. Les études d’agrégation des interrupteurs magnétiques ont permis de mieux comprendre l’organisation supramoléculaire. Cette organisation est un point crucial pour le développement de futurs circuits basés sur une fabrication “bottom-up”. / The demand of downscaling of technology will reach its limit at the atomic length scale. This claim creates the necessity of investigating the smallest components suitable to become devices, single molecules or group of atoms. Therefore, 1,4-bis(pyridin-4-ylethynyl) benzene (BPEB), Dibenzo[a,h]thianthrene (DBTH) and Bis{82,92,152,162,222,232-hexa-(2,4,6-trifluorophenoxy)[g,l,q]-5,10,15,20-tetraazaporphyrino)}[b,e]-benzene (H4Pc2) have been designed, synthesized and characterized to investigate transport of charge through molecules and surface confined molecular switching. Scanning Probe Microscopy (SPM), such as STM, nc-AFM and combined STM/AFM were used to study the molecules on near-surface conditions. Density Functional Theory (DFT) calculations were used to interpret the experimental results. Moreover, the self-assembly of new fluorinated metalo mono-phthalocyanines, MPc (M= Mg2+, 2H+, Co2+) was investigated in solution.Firstly, conductance experiments performed while a molecular wire (BPEB) was being lifted up from a surface revealed the conformational changes associated to the transport of electrons through molecules. Secondly, the “butterfly” flapping motion in the class of the thianthrenes was blocked due to the interaction with a surface at low temperature. This block leads to the first stereochemical study of a quiral thianthere derivative (DBTH). The STM experiments on DBTH revealed a reproducible and non-destructive switching between two surface confined configurations of DBTH. In addition, nc-AFM with submolecular resolution has been proved to be a powerful tool for the full characterization and distinction of configurational and constitutional isomers on surfaces. Thirdly, the molecular structure of a binuclear phthalocyanine (H4Pc2) was confirmed through constant current STM and constant high _f AFM experiments. These results set the state of future spintronic transport experiments (ongoing work). On the other hand, the aggregation studies on MPc revealed that the coordination character of the central atom of the Pc cavity has an important effect on the formation of aggregates. Additionally, electrochemical experiments demonstrated that molecular aggregations can lead to the quenching of the electrochemical-active nature of a Co2+ atom.Herein it has been demonstrated that SPM are suitable techniques to study the conformational and configurational changes associated with the tunneling of electrons through planar and non-planar molecules in real space. Aggregation studies of magnetic switches were carried out to better understand the supramolecular organization under near surface conditions, a key point for the design of future devices based on the bottom up approach.

Page generated in 0.0444 seconds