• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morphology Control of Copolymer Thin Films by Nanoparticles

Shagolsem, Lenin Singh 04 March 2014 (has links) (PDF)
Diblock-Copolymers (DBCs), created by covalently joining two chemically distinct polymer blocks, spontaneously form various nanoscale morphologies such as lamellae, cylinders, spheres, etc. due to the chemical incompatibility of its constituent blocks. This effect is called microphase separation in the literature. Because of this self-organizing property DBCs find applications in many areas e.g. in creating selective membranes, and in polymer based modern electronic devices like organic photovoltaics where the internal morphology plays an important role in determining the performance of the device. Many such modern devices are based on thin film technologies and uses copolymer nanocomposites as it exhibits advantageous electrical, optical, and mechanical properties. Also, DBC can direct the spatial distribution of nanoparticles (NPs) in the polymer matrix via microphase separation. Generally, two types of NPs are distinguished with respect to their monomer affinity: selective NPs which prefer one component of DBC, and non-selective NPs which interact equally with both components of DBC. In this work, using molecular dynamics simulations and analytical calculations, we explore the effect of adding both types of NP in the copolymer matrix considering a thin film (or confined) geometry. We consider a cylinder forming DBC melt confined by purely repulsive walls in slit geometry and study the behavior of the system upon adding non-selective NPs. Two models of non-selective interactions between the monomers and NPs are applied, i.e repulsive and weakly attractive interactions (athermal and thermal cases respectively). Spatial distribution of NPs in the copolymer matrix is sensitive to the NP-monomer interaction behavior. We focus on the thermal case and discuss, in particular, the following points: (1) role of diblock and polymer-wall interfaces, (2) spatial distribution of NPs, and (3) NP segregation and uptake behavior by the copolymer film. The uptake of NPs by the copolymer film in the thermal case displays a non-monotonic dependence on temperature which can be explained qualitatively using a mean-field model. In general, addition of non-selective NPs do not affect the copolymer morphology and the NPs are preferentially localized at the interface between microphase domains. Morphological transitions are observed when adding selective NPs to the copolymer matrix. By varying the amount of selective NPs and diblock composition we systematically explore the various structures formed by the nanocomposites under confinement and constructed the corresponding phase diagram in diblock composition and NP concentration. We also discuss the NP induced orientation transition of lamellar structure and study the stability of lamellar phases formed by the nanocomposites. To study the commensurability and wetting transition of horizontally oriented lamellar phase formed by the nanocomposites we have developed a mean field model based on the strong segregation theory. Our model predicts that it is possible to reduce the frustration in a film of fixed thickness by properly tuning the NP-monomer interaction strength. Furthermore, the model predicts a discontinuous transition between the non-wetted phase (where a dense NP layer is present in the polymer-substrate interface) and wetted phase (where the substrate is covered by polymers). Finally, we extend our study to non-equilibrium where we apply a shear flow field to copolymer thin films. Here, we study the flow behavior, lamellae deformation and change of pair-wise interaction energy, and macroscopic response like kinetic friction coefficient and viscosity of the copolymer thin film with and without NPs. / Lösungen von Diblock-Copolymeren (DBC), welche durch die kovalente Bindung zweier chemisch unterschiedlicher linearer Polymerblöcke entstehen, können spontan mikroskopische Strukturen ausbilden, welche je nach dem Grad der chemischen Kompatibiliät der Blöcke beispielsweise lamellen-, zylinder- oder kugelartige Formen zeigen. Dieses Phänomen wird meist als Mikrophasenseparation bezeichnet. Aufgrund dieser selbstorganisierenden Eigenschaft finden DBCs Anwendungen in vielen Bereichen der Forschung und der Industrie. Beispielsweise zur Erzeugung selektiver Membranen oder in moderner polymerbasierter Elektronik, wie organischen Solarzellen, wo die innere Struktur eine wichtige Rolle spielt um die Leistungsfähigkeit zu erhöhen. Viele moderne Geräte basieren auf der Technologie dünner Schichten und nutzen Copolymer-Nanokomposite um elektrische, optische oder mechanische Eigenschaften zu verbessern. In Folge der Mikrophasenseparation kann man mit Hilfe von DBC die räumliche Verteilung von Nanopartikeln (NP) in der Polymermatrix kontrollieren. Man unterscheidet im Allgemeinen zwischen zwei Arten von NP: selektive NP, welche eine der beiden Komponenten der DBC bevorzugen und nicht-selektive NP, welche mit beiden Komponenten gleichartig wechselwirken. In der vorliegenden Arbeit nutzen wir molekulardynamische Simulationen und analytische Rechnungen um den Eigenschaften zu studieren, welche eine Zugabe von selektiven und nicht-selektiven NP auf eine dünnschichtige Copolymermatrix hat. Wir betrachten eine zylinderformende Schmelze aus DBC, welche in einem dünnen Film, zwischen zwei harten Wänden eingeschränkt ist, und untersuchen das Verhalten des Systems unter Zugabe nicht-selektiver NP. Zwei Modelle nicht-selektiver Wechselwirkungen werden angenommen: ausschließlich repulsive (athermische) Wechselwirkungen und schwach anziehende (thermische) Wechselwirkungen. Die räumliche Verteilung der NP ist abhängig von dem jeweiligen Wechselwirkungsverhalten. Wir konzentrieren uns hierbei auf den thermischen Fall und diskutieren speziell folgende Schwerpunkte: (1.) die Rolle der sich ausbildenden Grenzschichten, (2.) die räumliche Verteilung der NP und (3.) die Abscheidung der NP, sowie die Aufnahmefähigkeit derselben durch die Polymermatrix. Im thermische Fall zeigt die Aufnahme der NP durch die Copolymerschicht eine nicht-monotone Abhängigkeit von der Temperatur, was mit Hilfe eines Mean-Field Modells erklärt werden kann. Die Zugabe nicht-selektiver NP hat keinen Einfluss auf die Struktur der Copolymermatrix und die NP werden vorzugsweise an der Grenzschicht der jeweiligen Mikrophasen gefunden. Im Gegensatz dazu kann man durch die Zugabe selektiver NP eine Strukturveränderung in der Copolymermatrix feststellen. Durch Veränderung der Menge der NP und der Zusammensetzung der DBC können wir systematisch unterschiedliche Strukturen des räumlich eingeschränkten Nanokomposits erzeugen und ein entsprechendes Phasendiagram bezüglich der NP Konzentration und der DBC Zusammensetzung erstellen. Wir untersuchen auch die durch NP induzierte Orientierung der Lamellenstruktur und analysieren ihre Stabilität. Um den sogenannten Kommensurabilitäts- und Benetzungsübergang in horizontal orientierten Lamellenstrukturen zu untersuchen haben wir ein Mean-Field Modell entwickelt, welches auf der Annahme der 'starken Segregation' basiert. Unser Modell macht die Vorhersage, dass es möglich ist die Frustration in einem Kompositfilm zu reduzieren, indem man die NP-Monomer-Wechselwirkung entsprechend anpasst. Zusätzlich sagt das Modell einen diskontinuierlichen Übergang zwischen der unbenetzten Phase (Ausbildung einer dichten NP Konzentration an der Polymer-Substrat Grenzschicht) und der benetzten Phase (das Substrat ist ausschließlich vom Polymerkomposit bedeckt) voraus. Abschließend weiten wir unsere Untersuchungen auf Nicht-Gleichgewichtszustände aus und induzieren durch Scherung der Substratwände einen Strömungprofil im Kompositfilm. Dabei analysieren wir das Strömungsverhalten, die Lamellendeformation und die Änderung der paarweisen Wechselwirkungsenergie. Wir untersuchen auch makroskopische Größen, wie den kinetischen Reibungskoeffizienten und die Viskosität, je in An- und Abwesenheit von Nanopartikeln.
2

Morphology Control of Copolymer Thin Films by Nanoparticles

Shagolsem, Lenin Singh 11 December 2013 (has links)
Diblock-Copolymers (DBCs), created by covalently joining two chemically distinct polymer blocks, spontaneously form various nanoscale morphologies such as lamellae, cylinders, spheres, etc. due to the chemical incompatibility of its constituent blocks. This effect is called microphase separation in the literature. Because of this self-organizing property DBCs find applications in many areas e.g. in creating selective membranes, and in polymer based modern electronic devices like organic photovoltaics where the internal morphology plays an important role in determining the performance of the device. Many such modern devices are based on thin film technologies and uses copolymer nanocomposites as it exhibits advantageous electrical, optical, and mechanical properties. Also, DBC can direct the spatial distribution of nanoparticles (NPs) in the polymer matrix via microphase separation. Generally, two types of NPs are distinguished with respect to their monomer affinity: selective NPs which prefer one component of DBC, and non-selective NPs which interact equally with both components of DBC. In this work, using molecular dynamics simulations and analytical calculations, we explore the effect of adding both types of NP in the copolymer matrix considering a thin film (or confined) geometry. We consider a cylinder forming DBC melt confined by purely repulsive walls in slit geometry and study the behavior of the system upon adding non-selective NPs. Two models of non-selective interactions between the monomers and NPs are applied, i.e repulsive and weakly attractive interactions (athermal and thermal cases respectively). Spatial distribution of NPs in the copolymer matrix is sensitive to the NP-monomer interaction behavior. We focus on the thermal case and discuss, in particular, the following points: (1) role of diblock and polymer-wall interfaces, (2) spatial distribution of NPs, and (3) NP segregation and uptake behavior by the copolymer film. The uptake of NPs by the copolymer film in the thermal case displays a non-monotonic dependence on temperature which can be explained qualitatively using a mean-field model. In general, addition of non-selective NPs do not affect the copolymer morphology and the NPs are preferentially localized at the interface between microphase domains. Morphological transitions are observed when adding selective NPs to the copolymer matrix. By varying the amount of selective NPs and diblock composition we systematically explore the various structures formed by the nanocomposites under confinement and constructed the corresponding phase diagram in diblock composition and NP concentration. We also discuss the NP induced orientation transition of lamellar structure and study the stability of lamellar phases formed by the nanocomposites. To study the commensurability and wetting transition of horizontally oriented lamellar phase formed by the nanocomposites we have developed a mean field model based on the strong segregation theory. Our model predicts that it is possible to reduce the frustration in a film of fixed thickness by properly tuning the NP-monomer interaction strength. Furthermore, the model predicts a discontinuous transition between the non-wetted phase (where a dense NP layer is present in the polymer-substrate interface) and wetted phase (where the substrate is covered by polymers). Finally, we extend our study to non-equilibrium where we apply a shear flow field to copolymer thin films. Here, we study the flow behavior, lamellae deformation and change of pair-wise interaction energy, and macroscopic response like kinetic friction coefficient and viscosity of the copolymer thin film with and without NPs. / Lösungen von Diblock-Copolymeren (DBC), welche durch die kovalente Bindung zweier chemisch unterschiedlicher linearer Polymerblöcke entstehen, können spontan mikroskopische Strukturen ausbilden, welche je nach dem Grad der chemischen Kompatibiliät der Blöcke beispielsweise lamellen-, zylinder- oder kugelartige Formen zeigen. Dieses Phänomen wird meist als Mikrophasenseparation bezeichnet. Aufgrund dieser selbstorganisierenden Eigenschaft finden DBCs Anwendungen in vielen Bereichen der Forschung und der Industrie. Beispielsweise zur Erzeugung selektiver Membranen oder in moderner polymerbasierter Elektronik, wie organischen Solarzellen, wo die innere Struktur eine wichtige Rolle spielt um die Leistungsfähigkeit zu erhöhen. Viele moderne Geräte basieren auf der Technologie dünner Schichten und nutzen Copolymer-Nanokomposite um elektrische, optische oder mechanische Eigenschaften zu verbessern. In Folge der Mikrophasenseparation kann man mit Hilfe von DBC die räumliche Verteilung von Nanopartikeln (NP) in der Polymermatrix kontrollieren. Man unterscheidet im Allgemeinen zwischen zwei Arten von NP: selektive NP, welche eine der beiden Komponenten der DBC bevorzugen und nicht-selektive NP, welche mit beiden Komponenten gleichartig wechselwirken. In der vorliegenden Arbeit nutzen wir molekulardynamische Simulationen und analytische Rechnungen um den Eigenschaften zu studieren, welche eine Zugabe von selektiven und nicht-selektiven NP auf eine dünnschichtige Copolymermatrix hat. Wir betrachten eine zylinderformende Schmelze aus DBC, welche in einem dünnen Film, zwischen zwei harten Wänden eingeschränkt ist, und untersuchen das Verhalten des Systems unter Zugabe nicht-selektiver NP. Zwei Modelle nicht-selektiver Wechselwirkungen werden angenommen: ausschließlich repulsive (athermische) Wechselwirkungen und schwach anziehende (thermische) Wechselwirkungen. Die räumliche Verteilung der NP ist abhängig von dem jeweiligen Wechselwirkungsverhalten. Wir konzentrieren uns hierbei auf den thermischen Fall und diskutieren speziell folgende Schwerpunkte: (1.) die Rolle der sich ausbildenden Grenzschichten, (2.) die räumliche Verteilung der NP und (3.) die Abscheidung der NP, sowie die Aufnahmefähigkeit derselben durch die Polymermatrix. Im thermische Fall zeigt die Aufnahme der NP durch die Copolymerschicht eine nicht-monotone Abhängigkeit von der Temperatur, was mit Hilfe eines Mean-Field Modells erklärt werden kann. Die Zugabe nicht-selektiver NP hat keinen Einfluss auf die Struktur der Copolymermatrix und die NP werden vorzugsweise an der Grenzschicht der jeweiligen Mikrophasen gefunden. Im Gegensatz dazu kann man durch die Zugabe selektiver NP eine Strukturveränderung in der Copolymermatrix feststellen. Durch Veränderung der Menge der NP und der Zusammensetzung der DBC können wir systematisch unterschiedliche Strukturen des räumlich eingeschränkten Nanokomposits erzeugen und ein entsprechendes Phasendiagram bezüglich der NP Konzentration und der DBC Zusammensetzung erstellen. Wir untersuchen auch die durch NP induzierte Orientierung der Lamellenstruktur und analysieren ihre Stabilität. Um den sogenannten Kommensurabilitäts- und Benetzungsübergang in horizontal orientierten Lamellenstrukturen zu untersuchen haben wir ein Mean-Field Modell entwickelt, welches auf der Annahme der 'starken Segregation' basiert. Unser Modell macht die Vorhersage, dass es möglich ist die Frustration in einem Kompositfilm zu reduzieren, indem man die NP-Monomer-Wechselwirkung entsprechend anpasst. Zusätzlich sagt das Modell einen diskontinuierlichen Übergang zwischen der unbenetzten Phase (Ausbildung einer dichten NP Konzentration an der Polymer-Substrat Grenzschicht) und der benetzten Phase (das Substrat ist ausschließlich vom Polymerkomposit bedeckt) voraus. Abschließend weiten wir unsere Untersuchungen auf Nicht-Gleichgewichtszustände aus und induzieren durch Scherung der Substratwände einen Strömungprofil im Kompositfilm. Dabei analysieren wir das Strömungsverhalten, die Lamellendeformation und die Änderung der paarweisen Wechselwirkungsenergie. Wir untersuchen auch makroskopische Größen, wie den kinetischen Reibungskoeffizienten und die Viskosität, je in An- und Abwesenheit von Nanopartikeln.

Page generated in 0.1051 seconds