• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Material Degradation Studies in Molten Halide Salts

Dsouza, Brendan Harry 16 April 2021 (has links)
This study focused on molten salt purification processes to effectively reduce or eliminate the corrosive contaminants without altering the salt's chemistry and properties. The impurity-driven corrosion behavior of HAYNES® 230® alloy in the molten KCl-MgCl2-NaCl salt was studied at 800 ºC for 100 hours with different salt purity conditions. The H230 alloy exhibited better corrosion resistance in the salt with lower concentration of impurities. Furthermore, it was also found that the contaminants along with salt's own vaporization at high temperatures severely corroded even the non-wetted surface of the alloy. The presence of Mg in its metal form in the salt resulted in an even higher mass-loss possibly due to Mg-Ni interaction. The study also investigated the corrosion characteristics of several nickel and ferrous-based alloys in the molten KCl-MgCl2-NaCl salt. The average mass-loss was in the increasing order of C276 < SS316L < 709-RBB* < IN718 < H230 < 709-RBB < 709-4B2. The corrosion process was driven by the outward diffusion of chromium. However, other factors such as the microstructure of the alloy i.e. its manufacturing, refining, and heat-treatment processes have also shown to influence the corrosion process. Lowering the Cr content and introducing W and Mo in the alloy increased its resistance to corrosion but their non-uniform distribution in the alloy restricted its usefulness. To slow-down the corrosion process, and enhance the material properties, selected alloys were boronized and tested for their compatibility in the molten KCl-MgCl2-NaCl salt. The borided alloys exhibited better resistance to molten salt attack, where the boride layer in the exposed alloy was still intact, non-porous, and strongly adhered to the substrate. The alloys also did not show any compensation in their properties (hardness). It was also found that the boride layer always composed of an outermost silicide composite layer, which is also the weakest and undesired layer as it easily cracks, breaks, or depletes under mechanical and thermal stresses. Various different grades of "virgin" nuclear graphites were also tested in the molten KF-UF4-NaF salt to assist in the selection of tolerable or impermeable graphites for the MSR operational purposes. It was found that molten salt wettability with graphite was poor but it still infiltrated at higher pressure. Additionally, the infiltration also depended on the pore-size and porosity of the graphite. The graphite also showed severe degradation or disintegration of its structure because of induced stresses. / Doctor of Philosophy / Molten salts are considered as potential fuel and coolant candidates in MSRs because of their desirable thermophysical properties and heat-transfer capabilities. However, they pose grave challenges in material selection due to their corrosive nature, which is attributed to the impurities and their concentration (mostly moisture and oxygen-based) in the salt. This study focused on purifying the salt to reduce these contaminants without compromising its composition and properties. The influence of purification processes on the corrosion behavior of HAYNES® 230® alloy was studied in the molten chloride salt with different purity conditions. Various nickel and ferrous-based alloys were also studied for their compatibility in the molten chloride salt. This will assist in expediting the material selection process for various molten salt applications. It was observed that several factors such as alloy composition, its microstructure, impurities in the salt attribute to molten salt corrosion. It was also quite evident that corrosion in molten salts is inevitable and hence, the focus was shifted on slowing down this process by providing protective barriers in the form of coatings (i.e. boronization). The borided (coated) alloys not only improved the corrosion resistance but also enhanced and retained their properties like hardness after exposure to molten salts. Since these studies were conducted under static conditions, a more detailed investigation is needed for the selected alloys by subjecting them to extreme flow-conditions and for longer a duration of time. To achieve this objective, a forced circulation molten salt loop was designed and fabricated to conduct flow corrosion studies for alloys in molten chloride salt. Graphite is another critical component of the MSR where it is used as a moderator or reflector. Generally, molten salts exhibit poor wettability with graphite, but they can still infiltrate (graphites) at higher applied pressures, and result in the degradation or disintegration of graphite's structure, and eventually its failure in the reactor. This study provides infiltration data, and understanding of the degradation of various 'virgin' nuclear graphite grades by the molten fluoride salt. This should assist in the selection of tolerable or impermeable graphite grades for MSR operational purposes.
2

Recovery boiler superheater corrosion - solubility of metal oxides in molten salt

Meyer, Joseph Freeman 15 April 2013 (has links)
The recovery boiler in a pulp and paper mill plays a dual role of recovering pulping chemicals and generating steam for either chemical processes or producing electricity. The efficiency of producing steam in the recovery boiler is limited by the first melting temperature of ash deposits that accumulate on the superheater tubes. Above the first melting temperature, the molten salt reacts with the protective oxide film that develops and dissolves it. The most protective oxide is determined by evaluating how little it dissolves and how its solubility changes in the molten salt. Solubility tests were done on several protective oxides in a known salt composition from a recovery boiler that burns hardwood derived fuel. ICP-OES was used to measure concentration of dissolved metal in the exposure tests while EDS and XRD were used to verify chemical compositions in exposure tests. NiO was found to be the least soluble oxide while Cr₂O₃ and Al₂O₃ had similar solubility with Fe₂O₃ being less soluble than Cr₂O₃ but more soluble than NiO. Exposure tests with pure metals and selected alloys indicated that even though Fe₂O₃ has little solubility, it is not a protective oxide and causes severe corrosion in stainless steels. The change in performance of iron based alloys was due to the development of a negative solubility gradient for Fe₂O₃ where Fe₂O₃ precipitated out of solution and created a continuous leaching of oxide. Manganese was found to be beneficial in stainless steels but its role is still unknown. Nickel based alloys were found to be least corroded due to nickel's low solubility and because it did not form a negative solubility gradient.
3

THE STABILITY OF, AND CORROSION BY, EARTH-ABUNDANT MOLTEN CHLORIDES FOR USE IN HIGH-TEMPERATURE THERMAL ENERGY STORAGE

Adam Shama Caldwell (16327851) 14 June 2023
<p>  </p> <p>Concentrated solar power (CSP) is a technology that utilizes focused sunlight to heat a high-temperature medium (such as a molten salt). Heat from this medium can be transferred to a working fluid (such as supercritical CO2) that is then used to drive a turbine to generate electricity. Alternatively, the hot medium/fluid can be pumped into tanks for thermal energy storage (TES), for heat extraction later to generate dispatchable electricity and/or for electricity production at night or on cloudy days. By increasing the fluid temperature to <u>></u>750oC and utilizing TES, CSP can become more cost competitive with fossil-based electricity production. Current CSP systems utilize molten nitrate salts for heat transfer and TES that are known to thermally degrade at temperatures >600oC. To achieve temperatures <u>></u>750oC, molten chloride salts, such as ternary MgCl2-KCl-NaCl compositions, are being considered as heat transfer and thermal energy fluids for next generation CSP plants due to their higher temperature stability, low cost, and availability. </p> <p>In this work, it was demonstrated that MgCl2-containing molten salts are prone to oxidation in ambient air at 750oC, which can enhance corrosion of the containment materials and alter the thermophysical properties of the fluid. An alternative, low-cost, earth-abundant, MgCl2-free, oxidation-resistant molten salt, a eutectic CaCl2-NaCl composition, was developed, along with a corrosion mitigation strategy, to enable the slow growth of protective oxide layers on metals that are resistant to dissolution by such MgCl2-free molten chloride salts. </p> <p>This strategy was expanded to other low-cost, oxidation resistant compositions, such as eutectic BaCl2-CaCl2-KCl-NaCl with tailored chemical and thermophysical properties for CSP and TES. The melting temperature, heat capacity, oxidation resistance, and crystallization behavior were measured for eutectic a BaCl2-CaCl2-KCl-NaCl(17.5-47.8-3.3-31.4 mol%) (BCKN) salt and a MgCl2-KCl-NaCl (40-40-20 mol%) salt. BCKN salt was shown to have a similar melting temperature while having a higher heat capacity and far better oxidation resistance. </p> <p>The corrosion of the nickel-based superalloy Haynes 214 was studied in molten MgCl2-KCl-NaCl (40-40-20 mol%) salt at 750oC under inert atmosphere conditions using a custom-built rotating-disc corrosion testing apparatus that maintained laminar fluid flow on the sample. Non-protective external Cr-, Al-, and Mg- oxide layers were formed on Haynes 214 that were prone to spallation. Internal oxidation of Al was also observed along with Cr depletion zones within Haynes 214.  Corrosion kinetics were evaluated to quantify the role of fluid flow for application of this alloy for use in containment and transportation of this molten chloride salt. </p>

Page generated in 0.0879 seconds