• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 16
  • 16
  • 10
  • 9
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Seismic Performance of Symmetric Steel Moment Frames with Random Reactive Weight Distributions

Williamson, Conner F.F. 01 December 2012 (has links) (PDF)
When a structure undergoes seismic excitation, the intensities and spatial distributions of the reactive weights on the structure may not be the same as those assumed in original design. Such a difference is inevitable due to many facts with the random nature (e.g., redistribution of live load), resulting in accidental eccentricity and consequently torsional response in the system. The added torsion can cause excessive deformation and premature failure of the lateral force resisting system and its detrimental effect is typically accounted for in most building design codes with an arbitrarily specified accidental eccentricity value. While it tends to amplify drift response of buildings under earthquake excitations, it is unclear whether the code specified accidental eccentricity is quantitatively adequate or not in seismic fragility assessment of steel moment frames (including low-rise, mid-rise and high-rise frames) with random reactive weight distributions. This thesis applies surveyed dead and live load intensities and distributions to three representative steel moment resisting frame structures that have been widely investigated in a series of projects under the collaboration of the Structural Engineers Association of California (SEAOC), the Applied Technology Council (ATC), and Consortium of Universities for Research in Earthquake Engineering (CUREE), known as SAC. Based on an extensive parametric study and incremental nonlinear dynamic analyses, it is found that variable load intensity and eccentricity had negligible impacts on the inter-story drifts of the low- and high-rise steel moment frames. However, they affect to a higher degree the performance of the mid-rise steel moment frames. Moreover, it is found that under the maximum considered earthquake (MCE) event, the actual drifts in steel moment frames with random reactive weight distributions can be conservatively captured through consideration of the code specified accidental eccentricities.
12

A Finite Element Investigation of Non-Orthogonal Moment Connections in Steel Construction

Wilson, Kevin E. January 2015 (has links)
No description available.
13

Seismic Response of Short Period Structures and the Development of a Self-Centering Truss Moment Frame with Energy Dissipating Elements for Improved Performance

Darling, Scott Christian 17 September 2012 (has links)
Traditionally, earthquake engineering has focused on protecting the lives of building occupants by utilizing inelasticity in structural members and connections to dissipate seismic energy and provide protection against collapse. This design concept is partially based on the equal displacement concept, which states that peak drifts for an inelastic system will be approximately equal to the peak drifts of an elastic system with the same initial stiffness for a given dynamic loading. This is a concept that has been shown to work for structures with natural period greater than about 1.0 seconds, but does not hold true for shorter period structures. An additional consequence of this design methodology is that conventional seismic systems do not explicitly limit the amount of structural damage, or offer a repair method that allows continued use of a structure after an earthquake. In fact, the structural damage distributed throughout a building and permanent residual drifts can make a conventional structure difficult if not financially unreasonable to repair after a large earthquake. These are both concerns facing the seismic design community that are investigated as a part of this thesis. First, a computational study was conducted on short period structural systems to investigate the relationship between initial structural period and collapse potential. The investigation utilizes a statistically based analysis methodology to investigate a study of single degree of freedom (SDOF) systems with periods between 0.1 seconds and 1.0 seconds. The SDOF models were developed using an elastic-linear hardening model with post-yield stiffness ranging between -10% and +10% of the initial stiffness. This part of the study was done to gain a general understanding of the influence of natural period and post-yield behavior on the collapse performance of structural systems and appropriate response modification factors. Next, a study of multi-degree of freedom (MDOF) masonry structures with short periods was conducted to examine how the SDOF trends translated to realistic MDOF structures. Based on these two studies, recommendations were made for how current U.S. building codes could be modified to account for the behavior of short period structures. Next, a new self-centering system that builds on the concepts of previous self-centering systems is developed. The self-centering truss moment frame (SC-TMF) was developed with the goal of providing self-centering capability while concentrating inelastic deformation in replaceable structural fuses. These goals are accomplished while mitigating a number of issues seen in other self-centering systems, such as deformation incompatibility with gravity framing, limited deformation capacity, and unusual field construction techniques. The development of the SC-TMF includes a set of preliminary monotonic pushover analyses and nonlinear time history analyses to confirm the expected behavior of the system. Next, a mechanics investigation was undertaken where static pushover analyses (monotonic and cyclic) were used to help derive equations to predict system behavior, such as strength and stiffness. Finally, a parametric study was conducted to gain a better understanding of how various design decisions influence structural behavior. It was shown that the SC-TMF was a viable seismic system for controlling residual drifts and concentrating inelasticity in replaceable fuse elements while mitigating the issues seen in other conventional self-centering systems. / Master of Science
14

A Finite Element Approach for Modeling Bolted Top-and-Seat Angle Components and Moment Connections

Ruffley, Daniel J. 26 September 2011 (has links)
No description available.
15

A Finite Element Approach for Modeling Bolted Top-and-Seat Angle Components and Moment Connections

Ruffley, Daniel J. 11 October 2011 (has links)
No description available.
16

NUMERICAL STUDY OF MULTIPLE ROCKING SELF-CENTERINGROCKING CORE SYSTEMS WITH BUCKLING-RESTRAINED COLUMNSFOR MID-RISE BUILDINGS

Al Ateah, Ali H. January 2017 (has links)
No description available.

Page generated in 0.0747 seconds