• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The elongation of beams in reinforced concrete special moment resisting frames

Liuzza, Gabrielle January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Donald J. Phillippi / Special moment resisting frames (SMRF) are intended to protect the structure from earthquake motions through a ductile inelastic response. This thesis evaluates the performance of reinforced concrete SMRFs with an emphasis on the second level beams. Due to previous research, it is concluded that two-dimensional finite element analyses (2D-FEA) and three-dimensional finite element analyses (3D-FEA) have different results when evaluating the same structure. Due to this, the thesis used a 3D-FEA to analyze frames based on Design Example 7 in the 2006 IBC Structural/Seismic Design Manual (Appendix A). While looking at the frame as a whole, the first of two parametric studies was performed over the columns. Using LS-DYNA the columns’ forces, displacement, moment, and curvature were evaluated. From these results, it was concluded that in SMRF, columns are not acting per current design assumptions due to the elongation of beams. Using the knowledge gained in the first parametric study, a second parametric study was performed on the second level floor beams. Focusing on the beam elongation, this thesis evaluates multiple frames with different load combinations using LS-DYNA to find the displacement of the reinforcement in the beams. With the results, an equation to calculate the elongation of beams was proposed, as well as an average percentage of the elongation in reinforced concrete SMRF. The equation and average percentage of elongation aim to provide a standard design consideration for the elongation of beams.
2

Evaluating the Effect of Decking Fasteners on the Seismic Behavior of Steel Moment Frame Plastic Hinge Regions

Toellner, Bradley W. 06 June 2013 (has links)
A series of full-scale beam-to-column moment connection tests were completed to determine the effects of powder actuated fasteners (PAF) and puddle welds on the seismic behavior of steel moment connections.  In seismic regions, PAF are currently prohibited in the connection region (referred to as the protected zone) due to the concern of low-cycle fatigue fracture.  There is almost no information available in the literature regarding the seismic behavior of moment connections with PAF or puddle welds. Full-scale connection testing is the most accurate way to investigate the behavior of different moment connections with common defects and fasteners applied in the protected zone.  However, it is cost prohibitive to conduct full-scale testing programs that are sufficiently comprehensive to investigate a wide range of defect types, severity, and locations.  For this reason, it is desired to develop alternative methods of investigation.  A finite element (FE) model capable of simulating both the global deformation patterns and local buckling effects in a moment connection has been developed.  Validated FE models will allow for further evaluation through numerical simulation of additional configurations.  Furthermore, alternate, more economical, test configurations to experimentally investigate the effect of defects on steel moment connections were explored.  This report discusses the full-scale test setup, results and analysis of completed experimental testing, the development of an FE connection model, and the preliminary development of alternate test configurations. / Master of Science
3

Development of a Phenomenological Model For Beam–to–Column Connections in Moment Resisting Frames Subjected to Seismic Loads

Penubothu Naga Nataraja, Satyanarayana Kumar 02 October 2006 (has links)
No description available.
4

Upgrade of Seismically Deficient Steel Frame Structures Built in Canada Between the 1960s and 1980s Using Passive Supplemental Damping

Kyriakopoulos, Nikolas 20 November 2012 (has links)
A typical 1960s Type 2 Construction steel MRF hospital structure in Quebec, representative of a prevalent construction philosophy of the time, was investigated and modelled in OpenSees using an advanced strength degradation model. The structure was then subjected to a nonlinear time-history analysis (NLTHA) for Montreal (MTL) and Vancouver (VAN) ground motions and was found to be deficient under the design hazard levels. Retrofits were proposed for the two orthogonal frames at both sites using a performance-based approach. An experimental program determined that the connections had less ductility than expected and began deteriorating around 2.0% interstorey drift. The OpenSees model was updated according to the experimental connection behaviour and the predicted NLTHA performance of the structure worsened. The proposed retrofit designs for both orthogonal frames in both MTL and VAN were updated with the new connection behaviour and final retrofit designs were proposed.
5

Upgrade of Seismically Deficient Steel Frame Structures Built in Canada Between the 1960s and 1980s Using Passive Supplemental Damping

Kyriakopoulos, Nikolas 20 November 2012 (has links)
A typical 1960s Type 2 Construction steel MRF hospital structure in Quebec, representative of a prevalent construction philosophy of the time, was investigated and modelled in OpenSees using an advanced strength degradation model. The structure was then subjected to a nonlinear time-history analysis (NLTHA) for Montreal (MTL) and Vancouver (VAN) ground motions and was found to be deficient under the design hazard levels. Retrofits were proposed for the two orthogonal frames at both sites using a performance-based approach. An experimental program determined that the connections had less ductility than expected and began deteriorating around 2.0% interstorey drift. The OpenSees model was updated according to the experimental connection behaviour and the predicted NLTHA performance of the structure worsened. The proposed retrofit designs for both orthogonal frames in both MTL and VAN were updated with the new connection behaviour and final retrofit designs were proposed.
6

The Effects of Shear Deformation in Rectangular and Wide Flange Sections

Iyer, Hariharan 16 March 2005 (has links)
Shear deformations are, generally, not considered in structural analysis of beams and frames. But shear deformations in members with low clear span-to-member depth ratio will be higher than normally expected, thus adversely affecting the stiffness of these members. Inclusion of shear deformation in analysis requires the values of shear modulus (modulus of rigidity, G) and the shear area of the member. The shear area of the member is a cross-sectional property and is defined as the area of the section which is effective in resisting shear deformation. This value is always less than the gross area of the section and is also referred to as the form factor. The form factor is the ratio of the gross area of the section to its shear area. There are a number of expressions available in the literature for the form factors of rectangular and wide flange sections. However, preliminary analysis revealed a high variation in the values given by them. The variation was attributed to the different assumptions made, regarding the stress distribution and section behavior. This necessitated the use of three-dimensional finite element analysis of rectangular and wide flange sections to resolve the issue. The purpose of finite element analysis was to determine which, if any, of the expressions in the literature provided correct answers. A new method of finite element analysis based on the principle of virtual work is used for analyzing rectangular and wide flange sections. The validity of the new method was established by analyzing rectangular sections for which closed form solutions for form factor were available. The form factors of various wide flange sections in the AISC database were calculated from finite element analysis and an empirical relationship was formulated for easy calculation of the form factor. It was also found that an empirical formula provided good results for form factors of wide flange sections. Beam-column joint sub-assemblies were modeled and analyzed to understand the contribution of various components to the total drift. This was not very successful since the values obtained from the finite element analysis did not match the values calculated using virtual work. This discrepancy points to inaccuracies in modeling and, possibly, analysis of beam-column joints. This issue needs to be resolved before proceeding further with the analysis. / Master of Science
7

Seismic Assessment Of Reinforced Concrete Beam-to-column Connections Under Reversed Cyclic Loading

Akin, Umut 01 April 2011 (has links) (PDF)
Prior experimental research clearly reveals that the performance of reinforced concrete frame structures under earthquake loading is closely related to the behavior of beam-to-column connection regions. In order for a reinforced concrete building to have an adequate response under high lateral deformations, beam-to-column connections should be able to preserve their integrity. However, even today beam-to-column connections are assumed to be rigid or elastic, leading to an incorrect estimation of the structural response under earthquake loading. One of the basic reasons for the assumption of rigid joints is the lack of analytical models that adequately represent the seismic behavior of the connection region. In this thesis, an analytical model that realistically represents the beam-to-column connection response is developed, in the light of prior experimental data. The experimental subassemblies used in the generation of the analytical model are later modeled in OpenSees environment in order to verify the accuracy of the model. Throughout the research, utmost attention is paid for the model to be simple enough to be used practically and also to cover a wide range of beam to column connection properties.

Page generated in 0.1305 seconds