• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconhecimento de sinais da libras utilizando descritores de forma e redes neurais artificiais

Bastos, Igor Leonardo Oliveira 15 May 2015 (has links)
Submitted by Mayara Nascimento (mayara.nascimento@ufba.br) on 2016-05-31T14:15:01Z No. of bitstreams: 1 Igor Bastos - Dissertação VFinal.pdf: 3703212 bytes, checksum: a00013910865dacb8025d56659076abb (MD5) / Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-03T23:17:29Z (GMT) No. of bitstreams: 1 Igor Bastos - Dissertação VFinal.pdf: 3703212 bytes, checksum: a00013910865dacb8025d56659076abb (MD5) / Made available in DSpace on 2016-06-03T23:17:29Z (GMT). No. of bitstreams: 1 Igor Bastos - Dissertação VFinal.pdf: 3703212 bytes, checksum: a00013910865dacb8025d56659076abb (MD5) / Gestos são ações corporais não-verbais voltadas para a expressão de algum significado. Estes incluem movimentos de mãos, face, braços, dedos, entre outros, sendo abordados por trabalhos que visam reconhecê-los para promover interações humanas com sistemas computacionais. Devido à grande aplicabilidade do reconhecimento de gestos, tem-se notado que estes trabalhos estão se tornando mais comuns, utilizando técnicas e metodologias mais elaboradas e capazes de prover resultados cada vez melhores. A opção por quais técnicas aplicar para o reconhecimento de gestos varia de acordo com a estratégia empregada em cada trabalho e quais aspectos são utilizados para este reconhecimento. Tem-se, por exemplo, trabalhos baseados no uso de modelos estatísticos. Outros optam pela aquisição de características geométricas de mãos e partes do corpo, enquanto outros, dentre os quais se enquadra o presente trabalho, optam pelo uso de descritores e classificadores, responsáveis por extrair características das imagens relevantes para o seu reconhecimento e; por realizar a classificação efetiva dos gestos baseado nestas informações. Neste âmbito, o presente trabalho visa elaborar, aplicar e apresentar uma abordagem para o reconhecimento de gestos, embasando-se em uma revisão da literatura a respeito das principais técnicas e metodologias empregadas para este fim e escolhendo como campo prático, a Língua Brasileira de Sinais (Libras). Para a extração de informações das imagens, optou-se pelo uso de um vetor de características resultante da aplicação dos descritores Histograma de Gradientes Orientados (HOG) e Momentos Invariantes de Zernike (MIZ), os quais voltam-se para as formas e contornos presentes nas imagens. Para o reconhecimento, foi utilizado o classificador Perceptron Multicamada, sendo este disposto em uma arquitetura onde o processo de classificação é dividido em 2 estágios. Devido à inexistência de datasets públicos da Libras, fez-se necessária, com o auxílio de especialistas da língua e alunos surdos, a criação de um dataset de 9600 imagens, as quais referem-se a 40 sinais da Libras. Isso fez com que a presente abordagem partisse desta criação do dataset até a etapa final de classificação dos sinais. Por fim, testes foram realizados e obteve-se 96,77% de taxa de acerto, evidenciando um alto índice de acerto. Este resultado foi validado considerando possíveis ameaças à abordagem, como a realização de testes considerando um indivíduo não-presente no conjunto de treinamento do classificador e a aplicação da abordagem em um dataset público de gestos.

Page generated in 0.1164 seconds