• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiplicidade de anéis 1-dimensionais e uma aplicação ao problema de Waring

Messias, Daniel Correia Lemos de 28 August 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-16T13:43:54Z No. of bitstreams: 1 arquivototal.pdf: 497004 bytes, checksum: f533fe667e534433904bf0bb58473fac (MD5) / Made available in DSpace on 2017-08-16T13:43:54Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 497004 bytes, checksum: f533fe667e534433904bf0bb58473fac (MD5) Previous issue date: 2015-08-28 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Let k be an algebraically closed eld of characteristic zero and consider the polynomial ring S = k[x1, . . . , xn] endowed with the standard grading. The Waring's problem for a form F ∈ S of degree d asks about the least integer s ≥ 1 for which there exist linear forms L1, . . . , Ls ∈ S satisfying F = Σs i=1 Ldi. Such integer is called Waring rank of F. In this dissertation, we present a solution to this problem { due to Carlini-Catalisano-Geramita { in the case of monomials, as an interesting application of a theorem (due to the same authors) that establishes a lower bound for the multiplicity of (standard) graded, nitely generated, reduced, 1-dimensional k-algebras. / Seja k um corpo algebricamente fechado de caracter stica zero e considere o anel de polin^omios S = k[x1, . . . , xn] munido da gradua c~ao padr~ao. O Problema de Waring para uma forma F ∈ S de grau d questiona a respeito do menor inteiro s ≥ 1 para o qual existem formas lineares L1, . . . , Ls ∈ S satisfazendo F = Σs i=1 Ldi. Tal inteiro e denominado posto de Waring de F. Nesta disserta c~ao, apresentamos uma solu c~ao deste problema { devida a Carlini-Catalisano-Geramita { no caso de mon^omios, como uma interessante aplica c~ao de um teorema (dos mesmos autores) que estabelece uma cota inferior para a multiplicidade de k- algebras graduadas (padr~ao) nitamente geradas, reduzidas e 1-dimensionais.

Page generated in 0.0285 seconds