Spelling suggestions: "subject:"monoamine oxidase"" "subject:"monoamine oxidases""
11 |
Synthesis and evaluation of chromone derivatives as inhibitors of monoamine oxidase / Annah Nyasha MpitimpitiMpitimpiti, Annah Nyasha January 2014 (has links)
BACKGROUND AND RATIONALE
Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder affecting the
central nervous system, primarily, the substantia nigra. It is characterized by loss of
dopaminergic neurons in the nigro-striatal pathway, and ultimately patients with Parkinson’s
disease may lose up to 80% of their dopamine-producing cells in the brain. Symptoms
include bradykinesia, muscle rigidity, resting tremor and impaired postural balance.
Symptomatic relief is obtained by using levodopa and various adjunct therapy including
dopamine agonists, catechol-O-methyltransferase inhibitors and monoamine oxidase B
inhibitors. Levodopa is used as the gold-standard for treatment of this disease. It effectively
controls motor symptoms, however, motor complications that impair the quality of life
develop with continued levodopa use. No treatments currently available can halt disease
progression, therefore novel drugs that can slow down or stop disease progression are
urgently required.
The monoamine oxidase (MAO) A and B enzymes are flavoenzymes that play an important
role in the oxidative degradation of amine neurotransmitters such as dopamine, serotonin
and epinephrine. Early attempts to block dopamine metabolism in the brain using nonselective
MAO inhibitors was effective but led to side effects such as hypertensive crisis,
thus they lost favor. The MAO-B enzyme is of particular importance in Parkinson’s disease
because it is more active than MAO-A in the basal ganglia, and is thus primarily responsible
for the catabolism of dopamine in the brain. Selegiline and rasagiline, both irreversible,
selective MAO-B inhibitors have proven efficacy in symptomatic treatment of Parkinson’s
disease, but due to the irreversible nature of their binding, it can take several weeks after
treatment termination for the enzyme to recover. Use of reversible inhibitors such as
lazabemide and safinamide do not have this disadvantage, and have safer side effect
profiles. Unfortunately, clinical trials for lazabemide use in Parkinson’s disease have been
discontinued. Therefore, due to the lack of disease modifying agents for Parkinson’s
disease, as well as safety concerns of current PD therapy, an urgent need exists for novel,
safe and efficient MAO inhibitors. Current research is thus aimed at designing selective or
non-selective reversible inhibitors that bind competitively to the enzyme.
The MAO inhibitory potential of chromone derivatives has been illustrated previously.
Evaluation of C6- and C7-alkyloxy substituted chromones, for example revealed that these
compounds were potent, selective and reversible MAO-B inhibitors. It has further been
shown that chromone 3-carboxylic acid is a potent selective, irreversible MAO-B inhibitor.
Phenylcarboxamide substitution in position 3 of chromone 3-carboxylic acid also results in
potent, selective MAO-B inhibitory activity. Therefore, further evaluation of the effect of
substitution with flexible side chains in the 3-position to evaluate MAO-B inhibition is of
importance.
The chromone ring system is thus a privileged scaffold for the design of inhibitors that are
selective for MAO-B and has the additional advantages of generally exhibiting low
mammalian toxicity and ease of synthesis.
AIM
The aim of this study was to design, synthesize and evaluate novel chromone derivatives as
inhibitors of monoamine oxidase.
RESULTS
Design and Synthesis
3-Aminomethylene-2,4-chromandiones and ester chromone derivatives were synthesized by
coupling several aromatic and aliphatic amines and alcohols, to chromone 3-carboxylic acid,
in the presence of CDI (carbonyldiimidazole). 15 Compounds were successfully synthesized
and characterized by using NMR and IR spectroscopy, as well as mass spectrometry. X-ray
crystallography was used to obtain a crystal structure for the 3-aminomethylene-2,4-
chromandione derivative, 46, in a bid to verify the structures of the synthesized compounds.
Melting points of all compounds were determined, and the purity determined using HPLC
techniques.
MAO inhibition studies
A fluorometric assay was employed using kynuramine as substrate, to determine the IC50
(50% inhibition concentration) values and SI (selectivity index) of the synthesized
compounds. Generally, the esters exhibited weak MAO-A and MAO-B inhibition, while the 3-
aminomethylene-2,4-chromandione derivatives showed promise as selective MAO-B
inhibitors, with IC50 values in the micromolar range. Compound 38, 3-
[(benzylamino)methylidene]-3,4-dihydro-2H-1-benzopyran-2,4-dione, was the most potent
MAO-B inhibitor with an IC50 value of 0.638 μM and a SI of 122 for MAO-B inhibition.
Interesting trends were revealed through analysis of the structure activity relationships, for
example, for the 3-aminomethylene-2,4-chromandione derivatives, the presence of a
chlorine moiety in the side chains of the compounds resulted in a decrease of MAO-B
inhibition activity. Chain elongation further also resulted in weakening the MAO-B inhibition
activity, while chain elongation in the ester derivatives led to a slight increase in MAO-B
inhibition activity.
Reversibility studies
The reversibility of binding of the most potent compound in the 3-aminomethylene-2,4-
chromandione series, 38, was evaluated. None of the synthesized inhibitors were potent
MAO-A inhibitors, therefore reversibility of MAO-A inhibition was not examined. Recovery of
enzyme activity was determined after dialysis of the enzyme-inhibitor complexes. Analysis of
the kinetic data obtained showed that MAO-B catalytic activity was recovered to 115% of the
control value. This suggests that compound 38 is a reversible inhibitor of MAO-B.
Mode of inhibition
A set of Lineweaver-Burk plots were constructed to determine mode of inhibition of
compound 38. The results show linear lines that intersect at a single point just to the left on
the y-axis. This indicates that compound 38 interacts competitively with the MAO-B enzyme.
In conclusion, chromone derivatives were synthesized and evaluated as inhibitors of MAO.
Compound 38 was the most potent MAO-B inhibitor with an IC50 value of 0.638 μM. The
effect of chain elongation and introduction of flexible substituents in position 3 of the
chromone 3-carboxylic acid nucleus was explored and the results showed that 3-
aminomethylene-2,4-chromandione substitution is preferable over ester substitution. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2015
|
12 |
Monoamine oxidases and aggressive behaviour : clinical studies and animal modelsMejia, Jose. January 2002 (has links)
No description available.
|
13 |
The Alzheimer disease-related presenilin-1(M146V) inhibits monoamine oxidase-A function in vivo and in vitro.Rui, Lewei 25 February 2011
Presenilin-1 (PS-1) is the catalytic core of the ã-secretase complex, which is best known for its role in the generation of the Alzheimer disease (AD)-related â-amyloid peptide. Mutated forms of PS-1 are known to be associated with particularly aggressive forms of AD. Changes in monoaminergic neurotransmitter systems, including the serotonin and norepinephrine systems, have long been associated with some of the earliest events in AD, whereas changes in the availability of these same monoamines have historically been associated with clinical depression. Therefore, it is not surprising that depression has now been proposed as a risk factor for developing AD and that pre-demented carriers of mutated forms of PS-1 are more prone to developing depression. MAO-A is historically associated with depression and is also a known risk factor for AD. Given this, I hypothesized that MAO-A represents a neurochemical link between depression and AD, and I chose to examine the influence of PS-1 mutations on MAO-A function in vivo/ex vivo and in vitro.<p>
I first focused on the PS-1(M146V) knock-in mouse model of AD-related PS-1/ã-secretase function. I used a radioenzymatic assay to estimate MAO-A catalytic activity and western blot analysis to determine MAO-A protein expression, and found that MAO-A activity does not correlate with MAO-A expression in the cortex and cerebellum of the PS-1(M146V) mice. Furthermore, the potency of the MAO-A inhibitor clorgyline (CLG) is greater in both the cortex and cerebellum of the PS-1(M146V) mice compared to the potency of CLG in wildtype littermates. CLG dose-response curves suggest that there might be a change in cooperativity in the MAO-A protein from PS-1(M146V) cortex (which would suggest a change in conformation and/or access of the substrate to the catalytic pocket in MAO-A). High-pressure liquid chromatography was used to analyze monoamine levels in these same regions. The levels of monoamines (i.e. serotonin, dopamine and norepinephrine) suggest that PS-1 (M146V) inhibits MAO-A function in the cortex, but not in the cerebellum. Furthermore, CLG has no significant effect on amine levels in cortex, but tends to increase their accumulation in cerebellum.<p>
The overexpression of PS-1 (M146V) in neuronal cultures reveals that this protein affects MAO-A activity and, more importantly, the PS-1(M146V) protein co-precipitates with MAO-A, thus suggesting a possibility for a direct protein-protein interaction. This is supported by the observation that MAO-A activity is increased in cell extracts incubated with the PS-1 substrate-competitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Preliminary studies have been undertaken to determine the motif in MAO-A that could be acting as a binding site/target site for PS-1.<p>
These combined results support the hypothesis that PS-1 proteins can influence MAO-A function and, furthermore, that MAO-A is a novel interactor for PS-1/ã-secretase. This could well explain some of the ambiguous literature associated with both of these proteins in disorders as diverse as depression and AD.
|
14 |
Characterization of a novel interaction between presenilin-1 and monoamine oxidase-AGabriel, Geraldine 28 April 2008
The enzyme monoamine oxidase (MAO) is linked to mental disorders such as depression and neurodegenerative diseases. Our laboratory has recently demonstrated that increases in calcium (Ca2+) can enhance MAO activity and that this might contribute to Alzheimer disease (AD). AD has been linked to gain-of-function mutations in the presenilin-1 (PS-1) protein that not only promote the generation of the toxic amyloid-â peptide, but that also alter intracellular Ca2+ availability. <p>Radioenzymatic MAO assays were used to demonstrate that over-expression of different AD-related PS-1 mutant proteins, i.e. Y115H, ÄEx9 and M146V, in hippocampal-derived HT-22 cells alter either basal and/or Ca2+-sensitive MAO-A activity. The effects of PS-1 mutant proteins on the availability of intracellular Ca2+ are not consistent suggesting that this may not be the primary means of regulating MAO activity. The sensitivity of MAO to Ca2+ was also demonstrated in cortical (both MAO-A and MAO-B responded to Ca2+) and cerebellar (only MAO-A responded to Ca2+) samples from transgenic mice overexpressing the PS-1 (M146V) mutation. These changes in MAO coincided with changes in the availability of the neurotransmitters dopamine, noradrenaline and serotonin in the cerebellum, but not in the cortex, and reflect the known regional differences in neurotransmitter regulation. Immunoprecipitation studies and the observed increase in MAO-A activity following in vitro chemical inhibition of the ã-secretase complex (comprising several proteins including PS-1) support the notion that PS-1 constitutively associates with MAO-A. These effects on Ca2+-sensitive MAO function could contribute to AD-related pathology and could also contribute to the depression often associated with AD.
|
15 |
The roles of Monoamine Oxidase-A and p38(MAPK) in breast cancer2012 May 1900 (has links)
Monoamine oxidase-A (MAO-A) is an enzyme that has historically been linked to major depressive disorder (MDD). The prevalence of MDD among breast cancer patients is almost 25%, but realistically it is underdiagnosed within this patient population. Most breast cancer is deemed estrogen receptor positive [ER(+)] and is commonly treated with the anti-estrogenic chemotherapeutic compound tamoxifen. Resistance to tamoxifen has been associated with a paradoxical activation of the stress-associated kinase, p38(MAPK) (normally associated with cell death). Our research group has recently demonstrated that p38(MAPK) can regulate the function of MAO-A in glial cells. Taken together, MAO-A, depression and p38(MAPK) are all associated with a poor prognosis in breast cancer patients, particularly those with an ER(+) status. Several mechanisms have been proposed in each respect and we hope to further elucidate this relationship by focussing on the interaction between MAO-A and p38(MAPK) in the context of breast cancer.
The hypothesis states that a functional interaction between the p38(MAPK) and MAO-A systems alters breast cancer cells in an ER-dependent manner.
The proposed objectives of this project are to determine what might be influencing MAO-A function in breast cancer cells, and how changes in MAO-A function affect cell phenotype. Using pharmacological approaches (i.e. antidepressant drugs), we investigated the role of MAO-A and p38(MAPK) on selected characteristics of ER(+) (e.g. MCF-7) and ER(-) (e.g. MDA-MB-231) breast cancer cells under four treatment conditions, which include clorgyline (CLG), an antidepressant MAO-A inhibitor, and SB203580, an inhibitor of p38(MAPK).
Our results indicate that the very high MAO-A activity in MDA-MB-231 (MB-231) cells was partly dependent on p38(MAPK) activity. The tumourigenic properties (e.g. anchorage-independent growth, migration) of MB-231 cells depended on both MAO-A and p38(MAPK) functions, although the effects were not additive suggesting that both inhibitors were exerting their respective effects via common signalling targets. The role of MAO-A and p38(MAPK) on MB-231 mitochondrial function and cell growth was negligible. In contrast, MAO-A and p38(MAPK) only influenced mitochondrial function in MCF-7 cells and did not affect any of the other tumourigenic properties measured. Immunocytochemical methods, supported by Western blotting, revealed an increase in E-cadherin expression in both cell lines. This suggested that MAO-A and p38(MAPK) could be influencing transitions between epithelial and mesenchymal phenotypes.
Our in vitro findings suggest that MAO-A and p38(MAPK) might contribute to a common mechanism in breast cancer cell lines, but that their influence on cell phenotype is less dependent on the respective cell's ER status and perhaps more so dependent on the cell's metastatic potential. If this is the case, then the contribution of MAO-A and p38(MAPK) to [clinical] metastatic breast cancer should be duly considered. Our ongoing investigations are focussing on the influence of clinically relevant antidepressants on breast cancer cell phenotype in vitro.
|
16 |
The Alzheimer disease-related presenilin-1(M146V) inhibits monoamine oxidase-A function in vivo and in vitro.Rui, Lewei 25 February 2011 (has links)
Presenilin-1 (PS-1) is the catalytic core of the ã-secretase complex, which is best known for its role in the generation of the Alzheimer disease (AD)-related â-amyloid peptide. Mutated forms of PS-1 are known to be associated with particularly aggressive forms of AD. Changes in monoaminergic neurotransmitter systems, including the serotonin and norepinephrine systems, have long been associated with some of the earliest events in AD, whereas changes in the availability of these same monoamines have historically been associated with clinical depression. Therefore, it is not surprising that depression has now been proposed as a risk factor for developing AD and that pre-demented carriers of mutated forms of PS-1 are more prone to developing depression. MAO-A is historically associated with depression and is also a known risk factor for AD. Given this, I hypothesized that MAO-A represents a neurochemical link between depression and AD, and I chose to examine the influence of PS-1 mutations on MAO-A function in vivo/ex vivo and in vitro.<p>
I first focused on the PS-1(M146V) knock-in mouse model of AD-related PS-1/ã-secretase function. I used a radioenzymatic assay to estimate MAO-A catalytic activity and western blot analysis to determine MAO-A protein expression, and found that MAO-A activity does not correlate with MAO-A expression in the cortex and cerebellum of the PS-1(M146V) mice. Furthermore, the potency of the MAO-A inhibitor clorgyline (CLG) is greater in both the cortex and cerebellum of the PS-1(M146V) mice compared to the potency of CLG in wildtype littermates. CLG dose-response curves suggest that there might be a change in cooperativity in the MAO-A protein from PS-1(M146V) cortex (which would suggest a change in conformation and/or access of the substrate to the catalytic pocket in MAO-A). High-pressure liquid chromatography was used to analyze monoamine levels in these same regions. The levels of monoamines (i.e. serotonin, dopamine and norepinephrine) suggest that PS-1 (M146V) inhibits MAO-A function in the cortex, but not in the cerebellum. Furthermore, CLG has no significant effect on amine levels in cortex, but tends to increase their accumulation in cerebellum.<p>
The overexpression of PS-1 (M146V) in neuronal cultures reveals that this protein affects MAO-A activity and, more importantly, the PS-1(M146V) protein co-precipitates with MAO-A, thus suggesting a possibility for a direct protein-protein interaction. This is supported by the observation that MAO-A activity is increased in cell extracts incubated with the PS-1 substrate-competitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Preliminary studies have been undertaken to determine the motif in MAO-A that could be acting as a binding site/target site for PS-1.<p>
These combined results support the hypothesis that PS-1 proteins can influence MAO-A function and, furthermore, that MAO-A is a novel interactor for PS-1/ã-secretase. This could well explain some of the ambiguous literature associated with both of these proteins in disorders as diverse as depression and AD.
|
17 |
Characterization of a novel interaction between presenilin-1 and monoamine oxidase-AGabriel, Geraldine 28 April 2008 (has links)
The enzyme monoamine oxidase (MAO) is linked to mental disorders such as depression and neurodegenerative diseases. Our laboratory has recently demonstrated that increases in calcium (Ca2+) can enhance MAO activity and that this might contribute to Alzheimer disease (AD). AD has been linked to gain-of-function mutations in the presenilin-1 (PS-1) protein that not only promote the generation of the toxic amyloid-â peptide, but that also alter intracellular Ca2+ availability. <p>Radioenzymatic MAO assays were used to demonstrate that over-expression of different AD-related PS-1 mutant proteins, i.e. Y115H, ÄEx9 and M146V, in hippocampal-derived HT-22 cells alter either basal and/or Ca2+-sensitive MAO-A activity. The effects of PS-1 mutant proteins on the availability of intracellular Ca2+ are not consistent suggesting that this may not be the primary means of regulating MAO activity. The sensitivity of MAO to Ca2+ was also demonstrated in cortical (both MAO-A and MAO-B responded to Ca2+) and cerebellar (only MAO-A responded to Ca2+) samples from transgenic mice overexpressing the PS-1 (M146V) mutation. These changes in MAO coincided with changes in the availability of the neurotransmitters dopamine, noradrenaline and serotonin in the cerebellum, but not in the cortex, and reflect the known regional differences in neurotransmitter regulation. Immunoprecipitation studies and the observed increase in MAO-A activity following in vitro chemical inhibition of the ã-secretase complex (comprising several proteins including PS-1) support the notion that PS-1 constitutively associates with MAO-A. These effects on Ca2+-sensitive MAO function could contribute to AD-related pathology and could also contribute to the depression often associated with AD.
|
18 |
Monoamine oxidases and aggressive behaviour : clinical studies and animal modelsMejia, Jose. January 2002 (has links)
Monoamine oxidases (MAOs) are phylogenetically old enzymes which catalyze the deamination of monoamines. Interest in a relationship between MAO and aggressive behaviour derives from the report of a single family with a mutation which obliterates the activity of MAO A, as well as a long history of studies which substantiate a relationship between MAO activity and impulsive aggressive behaviour. The goals of this thesis were: (1) to examine the generalizability of the specific MAO mutation noted above; (2) to evaluate the relationship between platelet MAO activity and genetic polymorphisms in MAO genes, and (3) to extend knowledge regarding the developmental behavioural impact of MAO deficiency in mice treated pre- and perinatally with inhibitors of MAO. / In the first study we genotyped the C936T mutation in 100 subjects followed longitudinally and oversampled for aggressive behaviour. None of the subjects in our sample carried this mutation. / In the second study, we report the lack of association between platelet MAO activity and four intronic microsatellite polymorphisms of the MAO genes. / Studies of MAO knockout mice are at significant variance with clinical pharmacological experience using MAO inhibitors. Prompted by this and by other seminal basic experiments, we hypothesized that inhibition of MAO activity during the developmental period would have profound behavioural effects. MAO A and B inhibitors were administered, separately or in combination, to mice during gestation and lactation. Total prenatal MAO inhibition produced a severe pattern of behaviour, while MAO-B inhibited mice demonstrated a similar pattern with lower intensity. Aggression was elevated in MAO-A inhibited mice only after acute pharmacological challenges suggesting prenatal sensitization. Thus developmental inhibition of MAO activity engenders behavioural effects which parallel those observed in animals devoid functional MAO. These data underscore the importance of neurochemical changes during development and provide a possible model for uninhibited aggression, common in clinical populations.
|
19 |
Studies on monoamine oxidase and catechol-o-methyltransferase in the isolated artery.Berry, Dorothy Muriel. January 1976 (has links) (PDF)
Thesis (M.Sc.)--University of Adelaide, Dept. of Physiology, 1977.
|
20 |
The Investigation of the Active Sites of Monoamine Oxidase (MAO) A and B and the Study of MAO-A Mediated Neurotoxicity Using 4-Substituted TetrahydropyridinesPalmer, Sonya Lenette Jr. 12 June 1998 (has links)
The mitochondrial membrane bound flavoenzymes monoamine oxidase A and B (MAO-A and MAO-B) catalyze the a-carbon oxidation of a variety of amines including neurotransmitters such as dopamine and serotonin. Although the primary structures of these enzymes have been established from the corresponding gene sequences, relatively little is known regarding the structural features of the active sites which lead to the selectivities observed with various substrates and inhibitors. In spite of many efforts, these enzymes have not been crystallized. In the absence of X-ray structures, the design, synthesis, and evaluation of biological activity remain the only way to assess a view of the active sites, through SAR and QSAR studies. The excellent MAO-A and/or B substrate and inhibitor properties of various 1,4-disubstituted-1,2,3,6-tetrahydropyridine derivatives offer an interesting opportunity to probe the active sites of MAO-A and MAO-B. In an effort to explore the spatial features of the active sites, we have synthesized series of substituted tetrahydropyridines, evaluated their biological activity with purified MAO-A and MAO-B, and carried out a topological analysis of the MAO active sites using molecular modeling. In addition, the results described in this thesis provide evidence that the MAO-A and MAO-B active sites differ in shape, regions of activity, and areas that tolerate polar interactions.
The role of MAO in neurodegenerative processes such as Parkinson's Disease has been recognized for some time. The structurally unique parkinsonian inducing substrate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is bioactivated to neurotoxic metabolites. The mechanism of neurotoxicity has been studied extensively and it is known that MAO-B catalyzes the conversion of MPTP to the 2,3-dihydro-1-methyl-4-phenylpyridinium species (MPDP+) which undergoes further oxidation to the neurotoxic metabolite 1-methyl-4-phenyl pyridnium (MPP+). However, the role of MAO-A in mediating a neurotoxic response, has not been fully defined due to the lack of selective MAO-A substrates. In this thesis, we have investigated the neurotoxic potential of several tetrahydropyridines in C57Bl/6 mice and the ability of selective inhibitors to protect against the expression of MAO mediated neurotoxicity. / Ph. D.
|
Page generated in 0.0449 seconds