Spelling suggestions: "subject:"monolayers"" "subject:"monolayer's""
41 |
Aza-bix(oxazoline) Copper Complexes Immobilized onto Self-Assembled Monolayers Supports: Surface Environment, Recycling, and Versatility StudyPaluti, Christy 20 September 2011 (has links)
The design, effectiveness and versatility of the self-assembled monolayer-immobilized aza-bis(oxazoline) catalysts was explored here. The first part of this dissertation focuses on the immobilization of aza-bis(oxazoline) ligand with three different C2 groups onto self-assembled monolayer support material. In the homogeneous phase, the more steric bulk present at the C2 position of the catalytic system, the greater the selectivity. In the heterogeneous systems, those with the least amount of steric bulk had the greatest increase in selectivity compared to their respective homogeneous phase. The supports not only allowed for selectivity enhancements not observed in the homogeneous phase, but also demonstrated the effectiveness of this support material in the cyclopropanation reaction.
<br>Self-assembled monolayer supports allowed for modification of the surface steric environment around the catalytic site. This was accomplished by varying the length of the background alkenethiol chains so that three steric environments were created. The three steric environments were the catalyst above the monolayer surface, level with the monolayer surface, and below the monolayer surface. Modification of the steric environment around the catalyst, in turn allows for control of the selectivity of the heterogeneous catalytic system.
<br>Modification of the surface electronic environment around the catalytic site is accomplished by modification of alkanethiol tail groups. The five background tail groups investigated were hydroxyl, bromide, carboxylic acid, methyl ester, and nitrile. Modification of the background tail groups allows for control of the enantioselectivity in the cyclopropanation reaction.
<br>Self-assembled monolayer supports also allow for the generation of effective reusable heterogeneous catalytic systems. One of the main positive aspects of heterogeneous catalysis is the ability to recycle the catalytic system multiple times without major reduction in selectivity. The duration of these heterogeneous aza-bis(oxazoline) systems is dependent on the stability of the gold substrate layer and the reaction solvent.
<br>The last section of this dissertation focuses on the versatility of the aza-bis(oxazoline) copper complex immobilized onto self-assembled monolayers. The homogeneous and heterogeneous catalysts were investigated in the carbonyl-ene reaction of ethyl glyoxylate and á-methylstyrene. The three heterogeneous catalytic systems were the carboxylic acid surface, hydroxyl surface, and the catalyst above the methyl monolayer surface. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
|
42 |
Synthesis of oligo(lactose)-based thiols and their self-assembly onto gold surfacesFyrner, Timmy, Ederth, Thomas, Aili, Daniel, Liedberg, Bo, Konradsson, Peter January 2013 (has links)
The ability to produce monomolecular coatings with well-defined structural and functional properties is of key importance in biosensing, drug delivery, and many recently developed applications of nanotechnology. Organic chemistry has proven to be a powerful tool to achieve this in many research areas. Herein, we present the synthesis of three oligo(lactosides) glycosylated in a (1 → 3) manner, and which are further functionalized with amide-linked short alkanethiol spacers. The oligosaccharides (di-, tetra-, and hexasaccharide) originate from the inexpensive and readily available lactose disaccharide. These thiolated derivatives were immobilized onto gold surfaces, and the thus formed self-assembled monolayers (SAMs) on planar gold were characterized by wettability, ellipsometry and infrared reflection–absorption spectroscopy. Further, the ability of these SAMs to stabilize gold nanoparticles in saline solutions was also demonstrated, indicating that the oligosaccharides may be used as stabilizing agents in gold nanoparticle-based assays.
|
43 |
Electrochemical and infrared spectroscopy studies of an ionizable self-assembled monolayerRosendahl, Scott Michael 21 October 2009
Switchable surfaces, also called smart surfaces or controllable surfaces, respond to changes in their local environment resulting in altered surface properties. There are various environmental perturbations that can cause changes to the surface properties but the focus of this thesis is on the affect of electrostatic potential. Significant evidence is provided from previous reports on electrochemical and infrared spectroscopic experiments suggesting that self-assembled monolayers (SAMs) of 4-mercaptobenzoic acid (4-MBA) undergo protonation-deprotonation by the application of an electric field. However, there are plenty of aspects of this electric field driven protonation-deprotonation mechanisms using carboxylic acid terminated SAMs that are not well understood. Most importantly, there is a lack of model independent measurements to validate this process. As such, experimental techniques utilizing infrared spectroscopy were employed to correlate electrochemical measurements and models.<p>
This body of work demonstrates the importance of the intermolecular hydrogen bonding network on the measured voltammetric peak associated with the protonation-deprotonation of these SAMs. The voltammetric peak height diminishes with increasing exposure to an electrolyte solution. This behaviour is attributed to the replacement of the carboxylic acid protons with electrolyte cations and ultimately the disruption of the hydrogen bonded network.<p>
We attempted to further our ex-situ infrared measurements by using an in-situ spectroelectrochemical technique. We had some initial successes, presented within, but more work is needed to complete this picture and is beyond the scope of this thesis. To summarize, the protonated state of SAMs of 4-MBA can be driven by the application of an electric field providing a potential platform to build a controllable smart surface.
|
44 |
Photoemission electron microscopy and atomic force microscopy of phase- separated Langmuir-Blodgett monolayer thin filmsChristensen, Stephen Lynd 06 January 2010
Langmuir-Blodgett (LB) organic monomolecular (monolayer) films containing fatty acids and their perfluorinated counterparts separate into phases under certain conditions. These perfluorinated surfactant containing mixed-phase systems have been shown to exhibit many favourable attributes in comparison to non- perfluorinated surfactant monolayers. In this thesis project, two of these films were investigated. One film is a 2:1 ratio mixture of arachidic acid (C19H39COOH AA) to perfluorotetradecanoic acid (C13F27COOH PA), which phase-separates into hexagonal domains ~6 ìm large (2:1 ratio of AA to PA 2AA1PA). The other film is a 2:1 mixture of stearic acid (C17H35COOH - SA) to PA, which phase-separates into linear domains ~300 nm wide (2:1 ratio of SA to PA 2SA1PA).<p>
Through the use of atomic force microscopy (AFM), and various synchrotron photoemission electron microscopy-based (PEEM) techniques, the films were characterized. As properties such as molecular organization, and dispersion of the molecules in the film, affect film function, it is necessary to use a variety of techniques to better understand order and composition in the films.<p>
First, the well-known and previously-studied film, 2AA1PA, was used to better understand contrast mechanisms in the energy filtered x-ray photoemission electron microscope (X-PEEM) at the CLS. Through the use of techniques such as secondary electron emission microscopy (SEEM), ultraviolet photoelectron spectroscopy (UPS), and x-ray linear dichroism microscopy (XLDM), the effects of secondary electrons, valence character, and polarization dependence were studied so as to better understand their contribution to contrast in energy-filtered PEEM-based spectromicroscopy.<p>
Second, the composition and organization of a novel system (2SA1PA), was characterized using traditional near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. As the size of the domains in the 2SA1PA system are below the spatial resolution limit of PEEM spectromicroscopy, methods involving selective phase dissolution, and spectrum subtraction, were used to acquire phase composition and molecular order information.<p>
The high lateral and vertical spatial resolution of AFM allowed physical imaging and confirmation of sample structure, as well as very accurate domain height determination. X-PEEM supplements this with chemical sensitivity using high spatial resolution spectromicroscopy. Therefore, using AFM and X-PEEM as complimentary techniques, it is possible to physically and chemically characterize phase-separated monolayer films.
|
45 |
Electrochemical and infrared spectroscopy studies of an ionizable self-assembled monolayerRosendahl, Scott Michael 21 October 2009 (has links)
Switchable surfaces, also called smart surfaces or controllable surfaces, respond to changes in their local environment resulting in altered surface properties. There are various environmental perturbations that can cause changes to the surface properties but the focus of this thesis is on the affect of electrostatic potential. Significant evidence is provided from previous reports on electrochemical and infrared spectroscopic experiments suggesting that self-assembled monolayers (SAMs) of 4-mercaptobenzoic acid (4-MBA) undergo protonation-deprotonation by the application of an electric field. However, there are plenty of aspects of this electric field driven protonation-deprotonation mechanisms using carboxylic acid terminated SAMs that are not well understood. Most importantly, there is a lack of model independent measurements to validate this process. As such, experimental techniques utilizing infrared spectroscopy were employed to correlate electrochemical measurements and models.<p>
This body of work demonstrates the importance of the intermolecular hydrogen bonding network on the measured voltammetric peak associated with the protonation-deprotonation of these SAMs. The voltammetric peak height diminishes with increasing exposure to an electrolyte solution. This behaviour is attributed to the replacement of the carboxylic acid protons with electrolyte cations and ultimately the disruption of the hydrogen bonded network.<p>
We attempted to further our ex-situ infrared measurements by using an in-situ spectroelectrochemical technique. We had some initial successes, presented within, but more work is needed to complete this picture and is beyond the scope of this thesis. To summarize, the protonated state of SAMs of 4-MBA can be driven by the application of an electric field providing a potential platform to build a controllable smart surface.
|
46 |
Photoemission electron microscopy and atomic force microscopy of phase- separated Langmuir-Blodgett monolayer thin filmsChristensen, Stephen Lynd 06 January 2010 (has links)
Langmuir-Blodgett (LB) organic monomolecular (monolayer) films containing fatty acids and their perfluorinated counterparts separate into phases under certain conditions. These perfluorinated surfactant containing mixed-phase systems have been shown to exhibit many favourable attributes in comparison to non- perfluorinated surfactant monolayers. In this thesis project, two of these films were investigated. One film is a 2:1 ratio mixture of arachidic acid (C19H39COOH AA) to perfluorotetradecanoic acid (C13F27COOH PA), which phase-separates into hexagonal domains ~6 ìm large (2:1 ratio of AA to PA 2AA1PA). The other film is a 2:1 mixture of stearic acid (C17H35COOH - SA) to PA, which phase-separates into linear domains ~300 nm wide (2:1 ratio of SA to PA 2SA1PA).<p>
Through the use of atomic force microscopy (AFM), and various synchrotron photoemission electron microscopy-based (PEEM) techniques, the films were characterized. As properties such as molecular organization, and dispersion of the molecules in the film, affect film function, it is necessary to use a variety of techniques to better understand order and composition in the films.<p>
First, the well-known and previously-studied film, 2AA1PA, was used to better understand contrast mechanisms in the energy filtered x-ray photoemission electron microscope (X-PEEM) at the CLS. Through the use of techniques such as secondary electron emission microscopy (SEEM), ultraviolet photoelectron spectroscopy (UPS), and x-ray linear dichroism microscopy (XLDM), the effects of secondary electrons, valence character, and polarization dependence were studied so as to better understand their contribution to contrast in energy-filtered PEEM-based spectromicroscopy.<p>
Second, the composition and organization of a novel system (2SA1PA), was characterized using traditional near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. As the size of the domains in the 2SA1PA system are below the spatial resolution limit of PEEM spectromicroscopy, methods involving selective phase dissolution, and spectrum subtraction, were used to acquire phase composition and molecular order information.<p>
The high lateral and vertical spatial resolution of AFM allowed physical imaging and confirmation of sample structure, as well as very accurate domain height determination. X-PEEM supplements this with chemical sensitivity using high spatial resolution spectromicroscopy. Therefore, using AFM and X-PEEM as complimentary techniques, it is possible to physically and chemically characterize phase-separated monolayer films.
|
47 |
Surface Monolayer Initiated Polymerization: A Novel Means of Fabricating Sub - 100 nm FeaturesMcCoy, Kendra Michele 12 April 2004 (has links)
The speed of microelectronic devices is controlled by the size of the transistor gate. In order to create faster devices, the size of this transistor gate must shrink. Microlithography is the method used to define patterns in semiconductor devices, and it is optimized periodically to create smaller features. It is a subtractive process that relies on the selective removal of sections of a photosensitive polymeric film called photoresist. This photoresist is exposed to patterned ultraviolet radiation that changes the local solubility of the film and allows for the creation of relief patterns in the resist using a developing solvent. Decreasing the wavelength of the light used to expose the patterns is the primary method for decreasing the minimum feature size that can be printed by this process. There are a number of challenges associated with decreasing the exposure wavelength for conventional lithographic processes. First of all, the polymeric films must be transparent at the exposure wavelength in order to allow light to propagate through the entire thickness of the film. Secondly, there is a limit in the thickness of the photoresist films that can be used. This thickness limits the etch resistance of the film. In fact, the issues concerning etch resistance and transparency are generally in opposition. This makes designing photoresist platforms for future lithographic applications very difficult. Therefore, to overcome these limitations, we are developing an unconventional approach to microlithography. In our approach, entitled Surface Monolayer Initiated Polymerization, polymer structures are formed on a surface by polymerizing a monomer in a patterned fashion using a self-assembled monolayer that can be locally activated to initiate the reaction. This process has been demonstrated by creating patterned polystyrene films on native silicon dioxide surfaces. In these initial studies, it took more than one day to create features. This is unacceptable for a lithographic application. The kinetics of all the processes involved in making these patterned layers is described. Along with these rate constants, means of optimizing these rates are also presented. Additionally, the patterns grown in these initial studies exhibited poor uniformity. Methods of optimizing the patterns formed are also presented.
|
48 |
Investigation of the role of sulfate ions in the reaction between tetrahydroabietic acid monolayers and aluminum ionsOw, Say Kyoun 01 January 1974 (has links)
No description available.
|
49 |
Surface-directed assembly of fibrillar extracellular matricesCapadona, Jeffrey R. 21 April 2005 (has links)
Biologically-inspired materials have emerged as promising substrates for enhanced repair in various therapeutic and regenerative medicine applications, including nervous and vascular tissues, bone, and cartilage. These strategies focus on the development of materials that integrate well-characterized domains from biomacromolecules to mimic individual functions of the extracellular matrix (ECM), including cell adhesive motifs, growth factor binding sites, and protease sensitivity. A vital property of the ECM is the fibrillar architecture arising from supramolecular assembly. For example, the fibrillar structure of fibronectin (FN) matrices modulates cell cycle progression, migration, gene expression, cell differentiation, and the assembly of other matrix proteins. Current biomaterials do not actively promote deposition and assembly of ECM. In this research, we describe the rational design and investigation of non-fouling biomimetic surfaces in which an oligopeptide sequence (FN13) from the self-assembly domain of FN is tethered to non-fouling substrates. This surface modification directs cell-mediated co-assembly of robust fibrillar FN and type I collagen (COL) matrices reminiscent of ECM, and increases in cell proliferation rates. Furthermore, the effect of this peptide is surface-directed, as addition of the soluble peptide has no effect on matrix assembly. We have also identified a critical surface density of the immobilized peptide to elicit the full activity. These results contribute to the development and design of biomimetic surface modifications that direct cell function for biomedical and biotechnology applications.
|
50 |
AFM-Based Nanolithography and Detection of DNA Hybridization Reactions at the NanoscaleLo, Shu-ting 23 July 2007 (has links)
High-resolution lattice periodicity images of a variety of well-defined surfaces, including graphite, mica, and Au(111), validated the good stability of our atomic force microscope (AFM) system. Combining self-assembled monolayer (SAM) and AFM technology, we demonstrated the capabilities of pattern fabrication as well as modification of surface functionality. AFM-based nanolithography operating conditions, such as scan rate, deflection setpoint, and number of scan were studied to obtain the optimized quality of the fabricated patterns. Thiolated-DNA probe molecules could be patterned at a nanometer scale on a gold substrate. However, we found that the surface coverage began to drop notably with the probe length (number of DNA bases). Therefore, the displaced DNA molecules during nanoshaving were reversibly adsorbed, and patterning became unreliable. We were unsuccessful in detecting the subsequent hybridization reactions at these nanopatterns from AFM measurements. To realize the DNA hybridization, further studies on the incubation temperature, probe length and even DNA sequences are required to demonstrate that this AFM-based gene diagnostic method is truly operational.
|
Page generated in 0.0358 seconds