Spelling suggestions: "subject:"montmorillonite"" "subject:"montmorillonites""
1 |
Formation and swelling of complexes between montmorillonite and some organic compoundsTheng, Benny Kian Goan January 1964 (has links)
[Typewritten] / Theis (Ph.D.) -- University of Adelaide, Dept. of Agricultural Chemsitry, 1965. / 198 leaves : ill. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
|
2 |
Investigation on Montmorillonite-Phenol InteractionsDesjardins, Simon January 1996 (has links)
No description available.
|
3 |
The effect of iron on bentonite stabilityWilson, James Charles January 2003 (has links)
No description available.
|
4 |
Polylactides stéréocomplexés et ignifugés : élaboration par extrusion réactive et caractérisations / Flame retarded and stereocomplexed polylactides : reactive extrusion processing and characterizationGallos, Antoine 06 December 2011 (has links)
Ces travaux ont pour objectif d’améliorer les propriétés physico-chimiques et la réaction au feu du polylactide pour des applications durables. Le manuscrit commence par un état de l’art des propriétés et des méthodes d’ignifugation du polylactide. Ensuite, un procédé par extrusion réactive a été développé et optimisé pour la polymérisation de différents polylactides, stéréocomplexés ou non, à partir des isomères L et D du lactide. Le polylactide stéréocomplexe multibloc ainsi obtenu possède des propriétés supérieures à celles du polylactide commercial (température de fusion et taux de cristallinité augmentés), mais une stabilité thermique plus faible à cause de la présence du catalyseur de polymérisation résiduel. Le protocole d’extrusion réactive est ensuite modifié afin d’améliorer la stabilité thermique des polylactides et de former des nanocomposites. L’ajout d’un ligand (α tropolone) pour désactiver le catalyseur de polymérisation résiduel améliore la stabilité thermique. Les polylactides chargés en nanotubes de carbone montrent une faible amélioration de leur réaction au feu. De ce fait, des polylactides intumescents ont été élaborés en combinant des retardateurs de flamme conventionnels (polyphosphate d’ammonium et mélamine) avec des nanoparticules (argile organomodifiée). La réaction au feu des polylactides intumescents est fortement améliorée, en particulier avec l’ajout d’argile organomodifiée. Un mécanisme réactionnel expliquant la synergie se produisant entre l’argile organomodifiée et les retardateurs de flamme est proposé. / The aim of this work is to enhance the physical and chemical properties and the fire reaction of polylactides for durable applications. A state of the art first reviews the properties and fire retardancy of polylactide. Then, a reactive extrusion process to polymerize L and D lactides monomers into various polylactides, including stereocomplexes polylactides (PLA), has been developed and optimized. The multibloc stereocomplexed polylactide shows enhanced properties compared to commercial PLA (increased fusion temperature and crystallinity rate), but less thermal stability due to residual catalyst of polymerization. Reactive extrusion process is thereafter updated in order to enhance thermal stability and to make PLA nanocomposites. The thermal stability is increased by catalyst deactivation with a ligand (α-tropolon). The polylactides filled with carbon nanotubes exhibit slight improvement in terms of fire retardancy. To overcome this issue, intumescent polylactides have been processed by combination of conventional fire retardants (ammonium polyphosphate and melamine) and nanofillers (organoclay). The fire retardancy of these materials is dramatically enhanced, especially when organoclay is used as synergist. A mechanism of action explaining synergy between fire retardant and organoclay is then proposed.
|
5 |
Elaboration de nanocomposites à matrice polypropylène chargée d'argile native / Elaboration of polypropylene-clay nanocomposites based on pristine montmorilloniteTouchaleaume, François 17 December 2010 (has links)
Cette étude porte sur l’élaboration de nanocomposites à matrice polypropylène (PP) chargée de montmorillonite native (NaMMT). La stratégie retenue est basée sur l’utilisation d’une phase polaire intermédiaire sous forme de mélanges maîtres, dont l’élaboration est réalisée par extrusion avec injection d’eau.Dans une première partie la dispersion de NaMMT et à titre de comparaison de montmorillonite modifiée par extrusion assistée eau dans le polyamide 6 (PA6) a été étudiée grâce à une analyse de la morphologie et de son influence sur les propriétés thermomécaniques. Par la suite, des mélanges maîtres à base de PA6 ont été élaborés par ce procédé et dispersés dans le PP via une compatibilisation réactive. L’analyse de la morphologie, en relation avec les conditions d’élaboration et les performances des mélanges nanocomposites est ensuite présentée.Dans une deuxième partie, un copolymère bloc polyether-bloc-amide (PEBA) a été utilisé comme matrice hôte de NaMMT. Sa dispersion dans le PEBA par extrusion assistée eau a été étudiée par une étude morphologique liée aux propriétés thermomécaniques et aux mécanismes de déformation. Le PEBA a ensuite été utilisé comme phase intermédiaire pour disperser NaMMT dans le PP. L’analyse de la morphologie des mélanges nanocomposites est présentée, en lien avec leurs conditions d’extrusion et leurs propriétés macroscopique.Finalement, la comparaison des résultats obtenus dans le cas des mélanges nanocomposites à base PA6 et PEBA est proposée afin de mettre en évidence le rôle de la polarité de la phase intermédiaire, de la rhéologie des constituants et des conditions de procédé sur les propriétés macroscopiques des matériaux. / This work focuses on polypropylene (PP)/clay nanocomposites based on pristine montmorillonite (NaMMT). The elaboration strategy involves the use of a polar polymer based masterbatch to disperse NaMMT in the PP matrix. Water assisted extrusion is used to finely disperse the native montmorillonite in the polar host polymer.In the first part, the dispersion of modified and pristine montmorillonite in polyamide 6 (PA6) using water assisted extrusion is presented. The morphological analysis of the PA6 nanocomposites and its outcome on the thermomechanical properties were studied. PA6 masterbatches were then elaborated using water assisted extrusion and dispersed in PP to obtain nanocomposites blends. Their morphologies are detailed, in relation with the processing conditions, and the related mechanical properties.In the second part, polyether-block-amide (PEBA) was used as host polymer to disperse modified and native montmorillonite. Their dispersion is obtained thanks to the water assisted extrusion process. The morphological analysis and its influence onto the thermomechanical properties and on the deformation mechanisms were studied. PEBA masterbatch were then prepared using water assisted extrusion and dispersed into PP to obtain nanocomposites blends. The study of their morphologies is presented, related to the extrusion conditions, and the corresponding macroscopic performances.Finally, the comparison of the results obtained in the case of PA6 and PEBA nanocomposites blends is discussed to evidence the influence of components rheology and polarity as well as the processing conditions onto the macroscopic behaviors of the materials.
|
6 |
Elaboration de nanocomposites à matrice polypropylène greffé amidon renforcée de montmorillonite pour application automobile / Preparation of montmorillonite-reinforced starch-grafted-polypropylene for automotive applicationTessier, Romain 14 December 2012 (has links)
Des nanocomposites polypropylène greffé amidon (PP-g-amidon) / argile organomodifiée ont été élaborés par extrusion bi-vis corotatives. Des compatibilisants de type polyoléfine greffée anhydride maléique (PP-g-MA), homopolymère PP ou copolymère éthylène-propylène, présentant différentes masses moléculaires et différents taux de greffage en MA ont été ajoutés à différents taux d’incorporation. Deux montmorillonites organomodifiées ont été utilisées contenant, l’une des groupes fonctionnels polaires présentant une affinité avec la phase amidon, l’autre des groupes fonctionnels apolaires ayant une affinité avec la phase PP de la matrice. La meilleure miscibilité des mélanges PP-g-amidon/PP-g-MA a été observée dans le cas d’un faible taux de compatibilisant (5wt%) copolymère éthylène-propylène greffé MA, qui combine la masse moléculaire la plus faible et le taux de greffage en MA le plus élevé (1,4 wt%), et présente un comportement rhéologique proche de celui du PP-g-amidon. L’optimisation des performances mécaniques (augmentation de rigidité et de résistance sans perte significative de ductilité) des hybrides ternaires a ensuite été obtenue de deux manières : (i) en ajoutant la montmorillonite apolaire, la compatibilisation n’étant alors pas fondamentale, (ii) en utilisant la montmorillonite polaire, ce qui nécessite une compatibilisation entre la phase polypropylène de la matrice et le surfactant de l’argile par une polyoléfine-g-MA suffisamment greffée en anhydride maléique (maléation de la phase polyoléfine>0,3wt%) dont la viscosité à la température de transformation est proche de celle de la matrice PP-g-amidon. / Starch-grafted polypropylene (PP-g-starch) / organoclay nanocomposites were melt-compounded by co-rotating twin-screw extrusion. Homopolymer or copolymer-based polypropylene-grafted maleic anhydride (PP-g-MA) with different molecular weights and different maleic anhydride (MA) grafting levels was added at different weight contents as compatibilizer. Two organo-modified montmorillonites were used, the first one containing polar functional groups having affinity with the starch phase, and the other one containing non polar-groups having affinity with the PP phase of the polymer matrix. The best miscibility of PP-g-starch/PP-g-MA blends was observed for low content (5wt%) of the ethylene-propylene copolymer-based PP-g-MA, which combines the lowest molecular weight and the highest MA-grafting level (1,4 wt%), and has a rheological behaviour close to that of PP-g-starch. Optimisation of mechanical properties (rigidity and strength increase without significant loss of ductility) of the ternary hybrids was then achieved by two ways: (i) by using the non polar montmorillonite, compatibilization being not essential in that case; (ii) by using the polar montmorillonite, which requires a compatibilization between the PP phase of the matrix and the starch organomodifier with a sufficiently MA-grafted polyogefin-g-MA (maleation of the polyolefin > 0,3wt%) whose viscosity at the processing temperature is close to that of the PP-g-starch matrix.
|
7 |
Élaboration et mise en forme de composites micro-fibrillaires par fibrillation in-situ : optimisation de la microstructure et des propriétés mécaniques résultantes / Elaboration and processing of micro-fibrillar composites by means of in-situ fibrillation : optimization of microstructure and mechanical propertiesChomat, Dimitri 05 December 2013 (has links)
L'élaboration de composites micro-fibrillaires a été réalisée par fibrillation in-situ à partir de couples de polymères immiscibles. Dans un premier temps, un mélange polypropylène / polyamide 6 (PP/PA6) a été utilisé comme référence pour la mise au point du procédé d'extrusion - étirage en continu. En faisant varier les paramètres rhéologiques, il est apparu que la fibrillation est soumise aux conditions d'un rapport de viscosité inférieur à 4 et d'un rapport d'élasticité inférieur à 1 durant le mélangeage. Des expériences portant sur la température de mise en forme des composites micro-fibrillaires par injection ont montré que la préservation de la morphologie nécessite une température inférieure à la température de fusion de la phase dispersée. Dans un deuxième temps, ces travaux ont porté sur l'incorporation de nanocharges d'argile dans un but de compatibilisation du mélange PP/PA6. Différentes voies d'ajout de la montmorillonite modifiée ont été testées. Parmi celles-ci, il a été vu que la pré-dispersion de la nanocharge dans la matrice PP aboutit à une migration des feuillets d'argile du PP vers l'interface PP/PA6 lors du procedé de fibrillation in-situ. Un affinement des fibrilles a été constaté à cette occasion, entraînant une amélioration de la résistance au choc. Enfin, une dernière partie a été consacrée au développement d'un composite micro-fibrillaire bio-sourcé acide polylactique / polyamide 11 sur la base des résultats précédemment acquis. Bien qu'une morphologie partiellement fibrillaire ait été formée lors de l'étirage, la mise en forme du composite par injection a entraîné la destruction des fibrilles par échauffement et relaxation. / Elaboration of microfibrillar composites based on immiscible polymer blends was performed by means of in-situ fibrillation. First, a polypropylene / polyamide 6 blend (PP/PA6) was used as a reference in order to develop an extrusion - drawing process. Upon variation of rheological parameters, it appeared that fibrillation requests a viscosity ratio less than 4 and an elastic ratio less than 1. Experiences about influence of processing temperature demonstrated that the injection step must be proceed at a temperature lower than the melting temperature of the dispersed phase in order to preserve the morphology. In a second part, this study dealt with the incorporation of organically modified montmorillonite with the aim of compatibilizing PP/PA6 blends. Several ways of nanoclay addition have been tested. Among them, nanoclay pre-dispersion in the PP matrix lead to the migration of clay platelets from PP to PP/PA6 interface during the in-situ fibrillation process. Hence, fibrils refinement was observed, inducing an improvement of impact resistance. Finally, one last part was dedicated to the development of a poly(lactic acid) / polyamide 11 bio-based micro-fibrillar composite. Whereas a partially fibrillar morphology was formed upon drawing, injection of the composite involved fibrils destruction due to overheating and subsequent relaxation.
|
8 |
Molecular dynamics simulation of montmorillonite and mechanical and thermodynamic properties calculationsAtilhan, Selma 15 May 2009 (has links)
Nanocomposites refer to the materials in which the defining characteristic size of
inclusions is in the order of 10-100nm. There are several types of nanoparticle inclusions
with different structures: metal clusters, fullerenes particles and molybdenum selenide,
Our research focus is on polymer nanocomposites with inorganic clay particles as
inclusions, in particular we used sodium montmorillonite polymer nanocomposite.
In our study, modeling and simulations of sodium montmorillonite (Na+-MMT) is
currently being investigated as an inorganic nanocomposite material. Na+-MMT clay
consists of platelets, one nanometer thick with large lateral dimensions, which can be
used to achieve efficient reinforcement of polymer matrices. This nanocomposite has
different applications such as a binder of animal feed, a plasticizing agent in cement,
brick and ceramic, and a thickener and stabilizer of latex and rubber adhesives.
In this study, sodium montmorillonite called Na+-MMT structure is built with the
bulk system and the layered system which includes from 1 to 12 layers by using Crystal
Builder of Cerius2. An isothermal and isobaric ensemble is used for calculation of
thermodynamic properties such as specific heat capacities and isothermal expansion
coefficients of Na+-MMT. A canonical ensemble which holds a fixed temperature,
volume and number of molecules is used for defining exfoliation kinetics of layered
structures and surface formation energies for Na+-MMT layered structures are calculated
by using a canonical ensemble. Mechanical properties are used to help characterize and
identify the Na+-MMT structure. Several elastic properties such as compliance and
stiffness matrices, Young's, shear, and bulk modulus, volume compressibility, Poisson's
ratios, Lamé constants, and velocities of sound are calculated in specified directions. Another calculation method is the Vienna Ab-initio Simulation Package (VASP). VASP
is a complex package for performing ab-initio quantum-mechanical calculations and
molecular dynamic (MD) simulations using pseudopotentials and a plane wave basis set.
Cut off energy is optimized for the unit cell of Na+-MMT by using different cut off
energy values. Experimental and theoretical cell parameters are compared by using cell
shape and volume optimization and root mean square (RMS) coordinate difference is
calculated for variation of cell parameters. Cell shape and volume optimization are done
for calculating optimum expansion or compression constant.
|
9 |
Multiphase polymer nanocompositesYoo, Youngjae 03 December 2010 (has links)
Polymer nanocomposites with organoclay fillers offer improved performance and opportunities for commercial applications. The key to significant property enhancement is to exfoliate the individual organoclay platelets into the polymer matrix to utilize their high aspect ratio and modulus. The affinity between the polymer matrix and the organoclay is one of the most important factors for determining the exfoliation level. To a certain extent, the affinity can be enhanced by optimizing the organoclay structure for a given polymer matrix. Numerous studies have demonstrated that nanocomposites provide significant enhancements in stiffness and strength, flame retardancy, gas barrier properties, thermal stability and ionic conductivity. However, most polymer nanocomposites have decreased toughness relative to that of the matrix polymer.
One exception to this general rule was found for nanocomposites based on poly(ethylene-co-methacrylic acid) ionomer prepared by melt compounding. My initial work investigated this system using an instrumented impact test. The data were analyzed using the essential work of fracture (EWF) methodology. Transmission electron microscopy (TEM) revealed that the clay platelets were well exfoliated in this matrix.
It has also been observed that addition of organoclays to polymer blends can greatly reduce the size of the dispersed phase in some cases. It was thought that this feature might be useful for controlling rubber particle size, and, therefore, the toughness of polyamide/elastomer blends.
Initially, I investigated the effect of the organoclay structure on the extent of exfoliation and properties of the nanocomposites. Nanocomposites based on the organoclays with one alkyl tail and hydroxyl ethyl groups gave well-exfoliated structures and high matrix reinforcement while nanocomposites from two-tailed organoclay contain a considerable concentration of intercalated stacks. Nanocomposites from the organoclays with one alkyl tail showed slightly better exfoliation and matrix reinforcement than those from the organoclays with hydroxyl ethyl groups.
Based on this research result, the toughening response of amorphous polyamide nanocomposites using two types of elastomers, EOR and EOR-g-MA, four types of organoclays, M3(HT)1, M2(HT)2, M1H1(HT)2 and (HE)2M1T1, and two mixing protocols, has been investigated.
Glass fibers (diameter ~ 12 m) are frequently used to reinforce polyamides. However, there is a practical limit to the amount of fiber that can be added while maintaining processability. Another possible use of organoclays is as an additional filler that acts on the nanoscale to complement the micro-scale reinforcement of the glass fibers. The possible synergies of simultaneous reinforcement at these very different length scales were explored and the composite moduli were compared to theoretical predictions using aspect ratios determined from TEM images. / text
|
10 |
The wet magnetic separation of montmorillonite from kaoliniteCochran, Joe Kennedy 08 1900 (has links)
No description available.
|
Page generated in 0.0407 seconds