• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic Mortality Modelling

Liu, Xiaoming 28 July 2008 (has links)
For life insurance and annuity products whose payoffs depend on the future mortality rates, there is a risk that realized mortality rates will be different from the anticipated rates accounted for in their pricing and reserving calculations. This is termed as mortality risk. Since mortality risk is difficult to diversify and has significant financial impacts on insurance policies and pension plans, it is now a well-accepted fact that stochastic approaches shall be adopted to model the mortality risk and to evaluate the mortality-linked securities. The objective of this thesis is to propose the use of a time-changed Markov process to describe stochastic mortality dynamics for pricing and risk management purposes. Analytical and empirical properties of this dynamics have been investigated using a matrix-analytic methodology. Applications of the proposed model in the evaluation of fair values for mortality linked securities have also been explored. To be more specific, we consider a finite-state Markov process with one absorbing state. This Markov process is related to an underlying aging mechanism and the survival time is viewed as the time until absorption. The resulting distribution for the survival time is a so-called phase-type distribution. This approach is different from the traditional curve fitting mortality models in the sense that the survival probabilities are now linked with an underlying Markov aging process. Markov mathematical and phase-type distribution theories therefore provide us a flexible and tractable framework to model the mortality dynamics. And the time-changed Markov process allows us to incorporate the uncertainties embedded in the future mortality evolution. The proposed model has been applied to price the EIB/BNP Longevity Bonds and other mortality derivatives under the independent assumption of interest rate and mortality rate. A calibrating method for the model is suggested so that it can utilize both the market price information involving the relevant mortality risk and the latest mortality projection. The proposed model has also been fitted to various type of population mortality data for empirical study. The fitting results show that our model can interpret the stylized mortality patterns very well.
2

Stochastic Mortality Modelling

Liu, Xiaoming 28 July 2008 (has links)
For life insurance and annuity products whose payoffs depend on the future mortality rates, there is a risk that realized mortality rates will be different from the anticipated rates accounted for in their pricing and reserving calculations. This is termed as mortality risk. Since mortality risk is difficult to diversify and has significant financial impacts on insurance policies and pension plans, it is now a well-accepted fact that stochastic approaches shall be adopted to model the mortality risk and to evaluate the mortality-linked securities. The objective of this thesis is to propose the use of a time-changed Markov process to describe stochastic mortality dynamics for pricing and risk management purposes. Analytical and empirical properties of this dynamics have been investigated using a matrix-analytic methodology. Applications of the proposed model in the evaluation of fair values for mortality linked securities have also been explored. To be more specific, we consider a finite-state Markov process with one absorbing state. This Markov process is related to an underlying aging mechanism and the survival time is viewed as the time until absorption. The resulting distribution for the survival time is a so-called phase-type distribution. This approach is different from the traditional curve fitting mortality models in the sense that the survival probabilities are now linked with an underlying Markov aging process. Markov mathematical and phase-type distribution theories therefore provide us a flexible and tractable framework to model the mortality dynamics. And the time-changed Markov process allows us to incorporate the uncertainties embedded in the future mortality evolution. The proposed model has been applied to price the EIB/BNP Longevity Bonds and other mortality derivatives under the independent assumption of interest rate and mortality rate. A calibrating method for the model is suggested so that it can utilize both the market price information involving the relevant mortality risk and the latest mortality projection. The proposed model has also been fitted to various type of population mortality data for empirical study. The fitting results show that our model can interpret the stylized mortality patterns very well.
3

Forecasting Mortality Rates using the Weighted Hyndman-Ullah Method

Ramos, Anthony Kojo January 2021 (has links)
The performance of three methods of mortality modelling and forecasting are compared. These include the basic Lee–Carter and two functional demographic models; the basic Hyndman–Ullah and the weighted Hyndman–Ullah. Using age-specific data from the Human Mortality Database of two developed countries, France and the UK (England&Wales), these methods are compared; through within-sample forecasting for the years 1999-2018. The weighted Hyndman–Ullah method is adjudged superior among the three methods through a comparison of mean forecast errors and qualitative inspection per the dataset of the selected countries. The weighted HU method is then used to conduct a 32–year ahead forecast to the year 2050.

Page generated in 0.0694 seconds