• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • Tagged with
  • 14
  • 14
  • 14
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement et validation d'un modèle eulérien en vue de la simulation des jets de carburants dans les moteurs à combustion interne

Truchot, Benjamin Magnaudet, Jacques. January 2006 (has links)
Reproduction de : Thèse de doctorat : Dynamique des fluides : Toulouse, INPT : 2005. / Titre provenant de l'écran-titre. Bibliogr. 134 réf.
2

Etude de l'endommagement tribologique des chemises de moteurs Diesel poids lourds et optimisation des matériaux et état de surface

Keller, Julia Kapsa, Philippe January 2006 (has links) (PDF)
Thèse de doctorat : sciences. Matériaux : Ecully, Ecole centrale de Lyon : 2006. / 96 réf.
3

Etude de l'endommagement tribologique des chemises de moteurs Diesel poids lourds et optimisation des matériaux et état de surface

Keller, Julia Kapsa, Philippe January 2006 (has links) (PDF)
Thèse de doctorat : sciences. Matériaux : Ecully, Ecole centrale de Lyon : 2006. / Titre provenant de l'écran-titre. 96 réf.
4

Optimisation de la microgéométrie des chemises de moteurs à combustion interne

Organisciak, Michel Lubrecht, Antonius A.. January 2008 (has links)
Thèse doctorat : Mécanique : Villeurbanne, INSA : 2007. / Titre provenant de l'écran-titre. Bibliogr. p. 147-155.
5

Diagnostic des plasmas de combustion par sonde d'ionisation : application à l'étude de l'interaction flamme-paroi instationnaire

Karrer, Maxime 21 October 2009 (has links) (PDF)
L'enjeu des technologies futures pour les motoristes sera de proposer une motorisation ayant de faibles émissions polluantes tout en conservant un coût de conception et de réalisation compétitif. L'une des caractéristiques de la combustion dans un moteur à allumage commandé est que la flamme atteint par endroit la paroi alors que seulement 30% de la charge a été consommée. Une grande partie du combustible brûle alors en proche paroi. Il es t indispensable de s'intéresser aux mécanismes de l'interaction flamme-paroi pour le développement et l'amélioration du fonctionnement des moteurs à allumage commandé. Les travaux proposés dans cette thèse montrent que les sondes d'ionisation permettent de mesurer des paramètres qui caractérisent l'interaction flamme-paroi et notamment pour des conditions de pression et de température élevées. Le développement de modèles théoriques simples a permis de mesurer différents paramètres comme la distance de coincement de la flamme, la vitesse de flamme ou bien encore la température, à partir de l'analyse du courant d'ionisation. Ces mesures ont été réalisées pour différentes géométries d'interaction flamme-paroi et différents types de mélanges. Des mesures combinées par diagnostics optiques (PIV, LIF, visualisation directe) et par mesure du flux de chaleur pariétal ont permis de valider l'ensemble des résultats obtenus sur différentes gammes de pression. Enfin, les propriétés de conductivité électrique de la flamme à haute pression ont été étudiées expérimentalement et théoriquement.
6

Mise au point de schémas cinétiques réduits pour décrire la formation des polluants NOx dans la combustion /

Ferrendier, Marc. January 1900 (has links)
Th. univ.--Énergétique--Orléans, 1998. / Bibliogr. p. 181-184. Résumé en français et en anglais. 1999 d'après la déclaration de dépôt légal.
7

Combined study by Direct Numerical Simulation and optical diagnostics of the flame stabilization in a diesel spray / Etude combinée par simulation numérique direct et diagnostics optiques de la stabilisation de la flamme d’un spray Diesel

Tagliante-Saracino, Fabien 11 March 2019 (has links)
La compréhension du processus de stabilisation des flammes Diesel constitue un défi majeur en raison de son effet sur les émissions de polluants. En effet, la relation étroite entre la distance de lift-off (distance entre la flamme et l’injecteur) et la production de suie est maintenant bien établie. Cependant, différents mécanismes de stabilisation ont été proposés mais sont toujours sujets à discussion. L'objectif de cette thèse est de fournir une contribution expérimentale et numérique pour identifier les mécanismes de stabilisation majeurs.La combustion d'un spray n-dodécane issu d'un injecteur mono-trou a été étudiée dans une cellule à volume constant en utilisant une combinaison de diagnostics optiques : mesures hautes cadences et simultanées de schlieren, LIF à 355 nm, chimiluminescence haute température ou de chimiluminescence OH *. Des expériences complémentaires sont effectuées au cours desquelles le mélange est allumé entre l’injecteur et le lift-off par plasma induit par laser. L’évolution du lift-off jusqu’à son retour à une position d’équilibre plus en aval est ensuite étudiée pour différentes conditions opératoires. L'analyse de l'évolution du lift-off sans allumage laser révèle deux types principaux de comportement : des sauts brusques en amont et un déplacement plus progressif en aval. Alors que le premier comportement est attribué à des événements d'auto-inflammation, le second est analysé grâce aux résultats obtenus par allumage laser. Il a été constaté que l'emplacement du formaldéhyde avait un impact important sur la vitesse de retour du lift-off.Une simulation numérique directe (DNS en anglais) bidimensionnelle d'une flamme liftée turbulente se développant spatialement dans les mêmes conditions opératoires que les expériences et reproduisant l'évolution temporelle de la distance de lift-off est proposée. Du fait que les expériences montrent que la flamme se stabilise en aval du spray liquide, la DNS ne couvre qu'une région en aval où l’écoulement est réduit à un jet gazeux. La chimie de l’n-dodécane est modélisée à l'aide d'un schéma cinétique (28 espèces transportées) prenant en compte les chemins réactionnels basse et haute température. Comme observé expérimentalement, la stabilisation de la flamme est intermittente : des auto-inflammations se produisent tout d'abord puis se font convecter en aval jusqu'à ce qu'une nouvelle auto-inflammation se produise. Le mécanisme principal de stabilisation est l'auto-inflammation. Toutefois, on observe également à la périphérie du jet diverses topologies de flammes, telles que des flammes triples, qui aident la flamme à se stabiliser en remplissant des réservoirs de gaz brûlés à haute température localisés à la périphérie, ce qui déclenche des auto-inflammations. Toutes ces observations sont résumées dans un modèle conceptuel décrivant la stabilisation de la flamme.Enfin, un modèle prédisant les fluctuations de la distance du lift-off autour de sa valeur moyenne temporelle est proposé. Ce modèle a été développé sur la base d’observations faites dans l’étude expérimentale et numérique : premièrement, le suivi temporel du lift-off a été décomposé en une succession d’auto-inflammations et d’évolutions en aval. Deuxièmement, la période entre deux auto-inflammations et la vitesse d'évolution en aval ont été modélisées à l'aide de corrélations expérimentales disponibles dans la littérature. Troisièmement, le modèle a été adapté afin de prendre en compte l’effet des réservoirs à haute température sur les fluctuations de la flamme. Et enfin, le modèle a été comparé aux données expérimentales, au cours desquelles des variations de la température ambiante, de la concentration en oxygène et de la pression d'injection ont été effectuées. Dès lors que le modèle a montré une bonne correspondance avec les données expérimentales, il peut être utilisé en complément du modèle prédisant la distance du lift-off moyen afin de mieux décrire la stabilisation d’une flamme Diesel. / The understanding of the stabilization process of Diesel spray flames is a key challenge because of its effect on pollutant emissions. In particular, the close relationship between lift-off length and soot production is now well established. However, different stabilization mechanisms have been proposed and are still under debate. The objective of this PhD is to provide an experimental and numerical contribution to the investigation of these governing mechanisms.Combustion of an n-dodecane spray issued from a single-hole nozzle was studied in a constant-volume precombustion vessel using a combination of optical diagnostic techniques. Simultaneous high frame rate schlieren, 355LIF (laser-induced fluorescence) and high-temperature chemiluminescence or OH* chemiluminescence are respectively used to follow the evolution of the gaseous jet envelope, formaldehyde location and lift-off position. Additional experiments are performed where the ignition of the mixture is forced at a location upstream of the natural lift-off position by laser-induced plasma ignition. The analysis of the evolution of the lift off position without laser ignition reveals two main types of behaviors: sudden jumps in the upstream direction and more progressive displacement towards the downstream direction. While the former is attributed to auto-ignition events, the latter is studied through the forced laser ignition results. It is found that the location of formaldehyde greatly impacts the return velocity of the lift-off position.A two-dimensional Direct Numerical Simulation (DNS) of a spatially developing turbulent lifted flame at the same operating conditions than the experiments and reproducing the temporal evolution of the lift-off length is proposed to provide a better understanding of the flame stabilization mechanisms. The DNS only covers a downstream region where the flow can be reduced to a gaseous jet, since experimental observations have shown that the flame stabilized downstream of the liquid spray. N-dodecane chemistry is modeled using a reduced chemical kinetics scheme (28 species transported) accounting for the low- and high temperature reaction pathways. Similar to what has been observed in the experiments, the flame stabilization is intermittent: flame elements first auto-ignite before being convected downstream until another sudden auto-ignition event occurs closer to the fuel injector. The flame topologies, associated to such events, are discussed in detail, using the DNS results, and a conceptual model summarizing the observations made is proposed. Results show that the main flame stabilization mechanism is auto-ignition. However, multiple reaction zone topologies, such as triple flames, are also observed at the jet periphery of the fuel jet helping the flame to stabilize by filling high-temperature burnt gases reservoirs localized at the periphery, which trigger in its turn auto-ignitions.Finally, a model predicting the fluctuations of the lift-off length around its time-averaged value is proposed. This model has been developed based on observations made in the experimental and numerical study: first, the lift-off length time-evolution was decomposed into a succession of auto-ignition events and downstream evolutions. Second, the period between two auto-ignition and the velocity of the downstream evolution was modeled using experimental correlations available in the literature. Third, the model has been adapted to take into account the effect of the high-temperature reservoirs on the flame fluctuations. Last, the model was compared to experimental data, where the ambient temperature, oxygen concentration and injection pressure were varied. Since the model showed good agreement with the experimental data, it can be used in addition to the model predicting the time-averaged lift-off length to better describe the Diesel flame stabilization.
8

Modeling of spray polydispersion with two-way turbulent interactions for high pressure direct injection in engines / Modélisation de la polydispersion des brouillards de gouttes sous l'effet des interactions two-way turbulentes pour l'injection directe à haute pression dans les moteurs

Emre, Oguz 21 March 2014 (has links)
La simulation des écoulements diphasiques rencontrés dans les moteurs à combustion interne (MCI) est de grande importance pour la prédiction de la performance des moteurs et des émissions polluantes. L’injection directe du carburant liquide à l’intérieur de la chambre de combustion génère loin de l’injecteur un brouillard de gouttes polydisperses, communément appelé spray. Du point de vue de la modélisation, l’émergence des méthodes Eulériennes pour la description du spray est considérée prometteuse par la communauté scientifique. De plus, la prise en compte de la distribution en taille des gouttes par les approches Eulériennes, de manière peu coûteuse en temps de calcul, n’est plus considérée comme un verrou depuis le développement de la méthode Eulerian Multi Size Moment (EMSM). Afin d’envisager la simulation de configurations réalistes de MCI, ce travail de thèse propose de modéliser les interactions turbulentes two-way entre le spray polydisperse évaporant et la phase gazeuse environnante par la méthode EMSM. Dans le contexte du formalisme Arbitrary Lagrangian Eulerian (ALE) dédiée au traitement du maillage mobile, les termes sources présents dans le modèle diphasique sont traités séparément des autres contributions. Le système d’équations est fermé à l’aide d’une technique de reconstruction par maximisation d’entropie (ME), originellement introduite pour EMSM. Une nouvelle stratégie de résolution a été développée pour garantir la stabilité numérique aux échelles de temps très rapides introduites par les transferts de masse, quantité de mouvement et énergie, tout en respectant la condition de réalisabilité associée à la préservation de l’espace des moments d’ordre ´élevé. A l’aide des simulations académiques, la stabilité et la précision de la méthode ont été étudiées aussi bien pour des lois d’évaporation constantes que dépendantes du temps. Tous ces développements ont été intégrés dans le code industriel IFP-C3D dédié aux écoulements compressibles et réactifs. Dans le contexte de la simulation en 2-D de l’injection directe, les résultats se sont avérés très encourageants comme en témoignent les comparaisons qualitatives et quantitatives de la méthode Eulerienne à la simulation Lagrangienne de référence des gouttes. De plus, les simulations en 3-D effectuées dans une configuration typique de chambre de combustion et des conditions d’injection réalistes ont donné lieu à des résultats qualitativement très satisfaisants. Afin de prendre en compte la modélisation de la turbulence, une extension moyennée, au sens de Reynolds, des équations du modèle diphasique two-way est dérivée, un soin particulier étant apporté aux fermetures des corrélations turbulentes. La répartition de l’énergie dans le spray ainsi que les interactions turbulentes entre les phases ont été étudiées dans des cas tests homogènes. Ces derniers donnent un aperçu intéressant sur la physique sous-jacente dans les MCI. Cette nouvelle approche RANS diphasique est maintenant prête à être employée pour les simulations d’application de MCI. / The ability to simulate two-phase flows is of crucial importance for the prediction of internal combustion engine (ICE) performance and pollutant emissions. The direct injection of the liquid fuel inside the combustion chamber generates a cloud of polydisperse droplets, called spray, far downstream of the injector. From the modeling point of view, the emergence of Eulerian techniques for the spray description is considered promising by the scientific community. Moreover, the bottleneck issue for Eulerian methods of capturing the droplet size distribution with a reasonable computational cost, has been successfully tackled through the development of Eulerian Multi Size Moment (EMSM) method. Towards realistic ICE applications, the present PhD work addresses the modeling of two-way turbulent interactions between the polydisperse spray and its surrounding gas-phase through EMSM method. Following to the moving mesh formalism ArbitraryLagrangian Eulerian (ALE), the source terms arising in the two-phase model have been treated separately from other contributions. The equation system is closed through the maximum entropy (ME) reconstruction technique originally introduced for EMSM. A new resolution strategy is developed in order to guarantee the numerical stability under veryfast time scales related to mass, momentum and energy transfers, while preserving the realizability condition associated to the set of high order moments. From the academic point of view, both the accuracy and the stability have been deeply investigated under both constant and time dependent evaporation laws. All these developments have beenintegrated in the industrial software IFP-C3D dedicated to compressible reactive flows. In the context of 2-D injection simulations, very encouraging quantitative and qualitative results have been obtained as compared to the reference Lagrangian simulation of droplets. Moreover, simulations conducted under a typical 3-D configuration of a combustion chamber and realistic injection conditions have given rise to fruitful achievements. Within the framework of industrial turbulence modeling, a Reynolds averaged (RA) extension of the two-way coupling equations is derived, providing appropriate closures for turbulent correlations. The correct energy partitions inside the spray and turbulent interactions between phases have been demonstrated through homogeneous test-cases. The latter cases gave also some significant insights on underlying physics in ICE. This new RA approach is now ready for ICE application simulations.
9

Synthèse unifiée de commandes robustes pour la chaine d'air des moteurs à combustion interne

Deng, Chao 14 June 2013 (has links) (PDF)
Depuis la création des moteurs à combustion interne, les recherches sur les moteurs essence et diesel se sont développées indépendamment. Afin de réduire les temps et les coûts de développement d'un moteur, une approche unifiée de conception serait intéressante. Dans ce cadre, le contrôle et la mise au point des moteurs à combustion interne pourrait être elle aussi unifiée. Bien évidemment, ce contrôle doit être stable, robuste vis-à-vis des disparités de fabrication, comme de fonctionnement. Cette thèse porte alors sur une démarche unifiée, pour les moteurs essence comme pour les moteurs diesel, afin d'obtenir un contrôle robuste de la chaîne d'air du moteur. La chaîne d'air du moteur contient les éléments permettant de contrôler la quantité et les proportions d'air et de gaz neutres dans le cylindre (Recirculation des gaz d'échappement, papillon d'admission, turbocompresseur). Cette démarche unifiée de commande, permettant de contrôler les systèmes monovariables, tout comme multivariables non carrés (nombre d'entrées différent du nombre de sorties), contient plusieurs étapes : identification d'un modèle du système, analyse du système permettant d'en déduire une structure de contrôle, synthèse d'un contrôleur autour d'un nominal, vérification de la robustesse en stabilité, tests du contrôle. Le couplage des entrées vers les sorties, les non linéarités sont pris en compte lors de la synthèse du contrôleur. Cette méthode de conception a été validée sur plusieurs applications dont un moteur essence et un moteur diesel. Des résultats expérimentaux sur un banc moteur diesel haute dynamique ont montrés que la commande multivariable permettait de réduire les émissions d'oxydes d'azote.
10

Modélisation des équations de l'hydrodynamique moteur sur maillage non structuré hybride /

Durand, Antoine, January 1900 (has links)
Th. doct.--Énerg.--Paris--Éc. centrale, 1996. N°: 1996-45. / 1996 d'après la déclaration de dépôt légal. Bibliogr. p. 215-222. Résumé en français et en anglais.

Page generated in 0.0849 seconds