Spelling suggestions: "subject:"gott insulator"" "subject:"mott insulator""
1 |
Search for Unconventional Superconductors at the Itinerant-to-Local Moment CrossoverZhao, Liang 05 June 2013 (has links)
In searching for novel optimal superconductors, three strategic routes based on theoretical and experimental knowledge from the known high-Tc superconductors are followed.
CaFe4As3 is a newly discovered 3D compound, with Fe2+ in tetrahedral coordination, similar to that in the parent compounds of the known superconductors. The thermodynamic and transport properties reveal a spin density wave (SDW) transition at TN = 88 K, and an incommensurate-to-commensurate SDW transition at T2=26.4 K. A large electronic specific heat coefficient γ=0.02 J/molK^2 and an unusually high Kadowaki-Woods (KW) ratio A/γ^2=55×10E−5 μΩcm mol^2K^2/mJ^2 point to strong electron correlations. While the commensurate SDW state below T2 is suppressed in Co-doped CaFe4As3, neither doping with P, Yb, Co and Cu, nor application of hydrostatic pressures up to 5 GPa, is able to fully suppress the robust incommensurate SDW order in this system.
The new layered compound SrMnBi2 has been studied as a promising candidate for high Tc superconductivity as suggested by theoretical calculations. We found that SrMnBi2 is structurally similar to, but more two dimensional than the known Fe superconductors. Two phase transitions at T1=292 K and T2=252 K have been observed. A large electronic specific heat coefficient γ=36.5 mJ/molK^2 and a KW ratio of 9.38×10E−5 μΩcm mol^2K^2/mJ^2 indicate enhanced electron correlations. DFT calculations have revealed metallic Sr-Bi layers in SrMnBi2, as well as Dirac-cone like features in the band structure.
Doping experiments on the Mott insulator Sr2F2Fe2OS2 have been carried out to search for superconductivity at the localized-to-itinerant moment crossover. Increasing amounts of T=Mn in Sr2F2(Fe1−xTx)2OS2 suppress the long range magnetic ordering at x≈0.2, and the subsequent increase in x results in a spin glass behavior for 0.2≤x≤0.5, and possibly a new magnetic order for x≥0.5. By contrast, Co-doping increases the AFM transition from TN=106 K for x=0 up to 124 K for x=0.3. The excitation gap determined from the electrical resistivity is minimized but remains finite around x=0.5 for T=Mn.
In addition, a study has been done on a rare binary type I superconductor YbSb2. Besides the superconducting transition at Tc=1.30 K, a possible second superconducting phase is observed below Tc(2)=0.41 K. From thermodynamic and transport measurements, there is strong, unambiguous evidence for the type I nature of the superconductivity in YbSb2.
|
2 |
Search for Unconventional Superconductors at the Itinerant-to-Local Moment CrossoverZhao, Liang 05 June 2013 (has links)
In searching for novel optimal superconductors, three strategic routes based on theoretical and experimental knowledge from the known high-Tc superconductors are followed.
CaFe4As3 is a newly discovered 3D compound, with Fe2+ in tetrahedral coordination, similar to that in the parent compounds of the known superconductors. The thermodynamic and transport properties reveal a spin density wave (SDW) transition at TN = 88 K, and an incommensurate-to-commensurate SDW transition at T2=26.4 K. A large electronic specific heat coefficient γ=0.02 J/molK^2 and an unusually high Kadowaki-Woods (KW) ratio A/γ^2=55×10E−5 μΩcm mol^2K^2/mJ^2 point to strong electron correlations. While the commensurate SDW state below T2 is suppressed in Co-doped CaFe4As3, neither doping with P, Yb, Co and Cu, nor application of hydrostatic pressures up to 5 GPa, is able to fully suppress the robust incommensurate SDW order in this system.
The new layered compound SrMnBi2 has been studied as a promising candidate for high Tc superconductivity as suggested by theoretical calculations. We found that SrMnBi2 is structurally similar to, but more two dimensional than the known Fe superconductors. Two phase transitions at T1=292 K and T2=252 K have been observed. A large electronic specific heat coefficient γ=36.5 mJ/molK^2 and a KW ratio of 9.38×10E−5 μΩcm mol^2K^2/mJ^2 indicate enhanced electron correlations. DFT calculations have revealed metallic Sr-Bi layers in SrMnBi2, as well as Dirac-cone like features in the band structure.
Doping experiments on the Mott insulator Sr2F2Fe2OS2 have been carried out to search for superconductivity at the localized-to-itinerant moment crossover. Increasing amounts of T=Mn in Sr2F2(Fe1−xTx)2OS2 suppress the long range magnetic ordering at x≈0.2, and the subsequent increase in x results in a spin glass behavior for 0.2≤x≤0.5, and possibly a new magnetic order for x≥0.5. By contrast, Co-doping increases the AFM transition from TN=106 K for x=0 up to 124 K for x=0.3. The excitation gap determined from the electrical resistivity is minimized but remains finite around x=0.5 for T=Mn.
In addition, a study has been done on a rare binary type I superconductor YbSb2. Besides the superconducting transition at Tc=1.30 K, a possible second superconducting phase is observed below Tc(2)=0.41 K. From thermodynamic and transport measurements, there is strong, unambiguous evidence for the type I nature of the superconductivity in YbSb2.
|
3 |
Search for Unconventional Superconductors at the Itinerant-to-Local Moment CrossoverZhao, Liang 05 June 2013 (has links)
In searching for novel optimal superconductors, three strategic routes based on theoretical and experimental knowledge from the known high-Tc superconductors are followed.
CaFe4As3 is a newly discovered 3D compound, with Fe2+ in tetrahedral coordination, similar to that in the parent compounds of the known superconductors. The thermodynamic and transport properties reveal a spin density wave (SDW) transition at TN = 88 K, and an incommensurate-to-commensurate SDW transition at T2=26.4 K. A large electronic specific heat coefficient γ=0.02 J/molK^2 and an unusually high Kadowaki-Woods (KW) ratio A/γ^2=55×10E−5 μΩcm mol^2K^2/mJ^2 point to strong electron correlations. While the commensurate SDW state below T2 is suppressed in Co-doped CaFe4As3, neither doping with P, Yb, Co and Cu, nor application of hydrostatic pressures up to 5 GPa, is able to fully suppress the robust incommensurate SDW order in this system.
The new layered compound SrMnBi2 has been studied as a promising candidate for high Tc superconductivity as suggested by theoretical calculations. We found that SrMnBi2 is structurally similar to, but more two dimensional than the known Fe superconductors. Two phase transitions at T1=292 K and T2=252 K have been observed. A large electronic specific heat coefficient γ=36.5 mJ/molK^2 and a KW ratio of 9.38×10E−5 μΩcm mol^2K^2/mJ^2 indicate enhanced electron correlations. DFT calculations have revealed metallic Sr-Bi layers in SrMnBi2, as well as Dirac-cone like features in the band structure.
Doping experiments on the Mott insulator Sr2F2Fe2OS2 have been carried out to search for superconductivity at the localized-to-itinerant moment crossover. Increasing amounts of T=Mn in Sr2F2(Fe1−xTx)2OS2 suppress the long range magnetic ordering at x≈0.2, and the subsequent increase in x results in a spin glass behavior for 0.2≤x≤0.5, and possibly a new magnetic order for x≥0.5. By contrast, Co-doping increases the AFM transition from TN=106 K for x=0 up to 124 K for x=0.3. The excitation gap determined from the electrical resistivity is minimized but remains finite around x=0.5 for T=Mn.
In addition, a study has been done on a rare binary type I superconductor YbSb2. Besides the superconducting transition at Tc=1.30 K, a possible second superconducting phase is observed below Tc(2)=0.41 K. From thermodynamic and transport measurements, there is strong, unambiguous evidence for the type I nature of the superconductivity in YbSb2.
|
4 |
Search for Unconventional Superconductors at the Itinerant-to-Local Moment CrossoverZhao, Liang 05 June 2013 (has links)
In searching for novel optimal superconductors, three strategic routes based on theoretical and experimental knowledge from the known high-Tc superconductors are followed.
CaFe4As3 is a newly discovered 3D compound, with Fe2+ in tetrahedral coordination, similar to that in the parent compounds of the known superconductors. The thermodynamic and transport properties reveal a spin density wave (SDW) transition at TN = 88 K, and an incommensurate-to-commensurate SDW transition at T2=26.4 K. A large electronic specific heat coefficient γ=0.02 J/molK^2 and an unusually high Kadowaki-Woods (KW) ratio A/γ^2=55×10E−5 μΩcm mol^2K^2/mJ^2 point to strong electron correlations. While the commensurate SDW state below T2 is suppressed in Co-doped CaFe4As3, neither doping with P, Yb, Co and Cu, nor application of hydrostatic pressures up to 5 GPa, is able to fully suppress the robust incommensurate SDW order in this system.
The new layered compound SrMnBi2 has been studied as a promising candidate for high Tc superconductivity as suggested by theoretical calculations. We found that SrMnBi2 is structurally similar to, but more two dimensional than the known Fe superconductors. Two phase transitions at T1=292 K and T2=252 K have been observed. A large electronic specific heat coefficient γ=36.5 mJ/molK^2 and a KW ratio of 9.38×10E−5 μΩcm mol^2K^2/mJ^2 indicate enhanced electron correlations. DFT calculations have revealed metallic Sr-Bi layers in SrMnBi2, as well as Dirac-cone like features in the band structure.
Doping experiments on the Mott insulator Sr2F2Fe2OS2 have been carried out to search for superconductivity at the localized-to-itinerant moment crossover. Increasing amounts of T=Mn in Sr2F2(Fe1−xTx)2OS2 suppress the long range magnetic ordering at x≈0.2, and the subsequent increase in x results in a spin glass behavior for 0.2≤x≤0.5, and possibly a new magnetic order for x≥0.5. By contrast, Co-doping increases the AFM transition from TN=106 K for x=0 up to 124 K for x=0.3. The excitation gap determined from the electrical resistivity is minimized but remains finite around x=0.5 for T=Mn.
In addition, a study has been done on a rare binary type I superconductor YbSb2. Besides the superconducting transition at Tc=1.30 K, a possible second superconducting phase is observed below Tc(2)=0.41 K. From thermodynamic and transport measurements, there is strong, unambiguous evidence for the type I nature of the superconductivity in YbSb2.
|
5 |
TUNNELING SPECTROSCOPY STUDY OF CALCIUM RUTHENATEBautista, Anthony 01 January 2010 (has links)
The ruthenates are perhaps one of the most diverse group of materials known up to date. These compounds exhibit a wide array of behaviors ranging from the exotic pwave superconductivity in Sr2RuO4, to the itinerant ferromagnetism in SrRuO3, and the Mott-insulating behavior in Ca2RuO4. One of the most intriguing compounds belonging to this group is Ca3Ru2O7 which is known to undergo an antiferromagnetic ordering at 56K and an insulating transition at 48K. Most intriguing, however, is the behavior displayed by this compound in the presence of an external magnetic field. For fields parallel to the a-axis, the compound undergoes a metamagnetic transition into the ferromagnetic region at 6 T. If the external field direction is changed to the b-axis then the result will be different. colossal magnetoresistance occurs and a fall in reistivity of up to three orders of magnitude is recorded at fields of 15T.
Most interesting, however, is the energy gap observed for this material. A number of groups have measured such gap with different methods and found conflicting results. For this reason it was of vital importance to perform measurements on this compound and try to resolve this issue. Tunneling spectroscopy is one of the most powerful techniques which can be used to probe the electronic properties of a material. The method is best suited to measure the density of states of a material and hence the nature of the strong correlations which dictate the properties of the compound. We performed a series of tunneling spectroscopy measurements by means of planar tunnel junctions. These types of junctions were chosen because of their stability over a large temperature range and their stability in the presence of an external field.
The anisotropies which showed up in the resistivity and magnetization measurements manifested also in our data. For tunneling parallel to the a-axis, we observed a gap opening at 48K with a width a peak to peak width of 2Δa ~258±15meV. As the temperature was lowered, the gap size increased reaching a maximum width of 2Δa ~ 845±38meVat 4.2K. Tunneling parallel to the b-axis, the gap has a much smaller size than the a-axis gap. At 48K the gap width is about 2Δb ~ 201±13 meV and reaches a maximum width of 2Δb ~ 366±33 meV at 4.2K. For the c-axis, the situation is different since the gap opens at 56K instead of 48K. The gap width at 56K is about 2Δc ~ 102±6meV and reaches a maximum width of 2Δc ~ 179±14 meV at 4.2K.
In the presence of an external field, we noticed that the overall behavior was always the same in the ab-plane but differed in c-axis direction. In our experiment, an external field was applied along the a-axis and measurements were made at 4.2K. For aaxis tunneling, the gap width decreased to a value of 2Δa ~ 587±27 meV at 4.2 K at 7T. On the other hand, the gap width in the b-axis direction decreased to a value of 2Δb ~ 308±25 meV for the same field. For the c-axis direction, the gap decreased to a value of 2Δc ~ 112±8 meV at 7T. The DOS of the c-axis differs for fields of 6T and above. A third peak emerges inside the gap on the valence side of the DOS. This third peak seems to be a direct consequence of the metamagnetic transition at 6T observed by other groups and may be attributable to a spin-filtering effect.
|
6 |
Theoretical study on electronic properties at interfaces of strongly correlated electron systems / 強相関電子系における界面電子状態の理論的研究Ueda, Suguru 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18772号 / 理博第4030号 / 新制||理||1581(附属図書館) / 31723 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川上 則雄, 教授 田中 耕一郎, 教授 松田 祐司 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
7 |
A systematic study of transport, magnetic and thermal properties of layered iridatesKorneta, Oleksandr B. 01 January 2012 (has links)
A unique feature of the 5d-iridates is that the spin-orbit interaction (SOI) and Coulomb interactions U are of comparable strength and therefore compete vigorously. The relative strength of these interactions stabilizes new exotic ground states that provide a fertile ground for studying new physics. SOI is proportional to Z^4 (Z is the atomic number), and it is now recognized that strong SOI can drive novel narrow-gap insulating states in heavy transition metal oxides such as iridates. Indeed, strong SOI necessarily introduces strong lattice degrees of freedom that become critical to new physics in the iridates. This dissertation thoroughly examines a wide array of newly observed novel phenomena induced by adjusting the relative strengths of U and SOI interactions via slight chemical doping and application of hydrostatic pressure in the layered iridates, particularly, BaIrO3 and Sr2IrO4.
|
8 |
Ultracold dipolar gases in optical latticesTrefzger, Christian 19 April 2010 (has links)
Esta tesis es un trabajo teórico, en el que estudiamos la física de los átomos dipolares bosónicos ultrafríos en retículos ópticos. Éstos gases consisten de átomos o moléculas bosónicas, enfriados bajo la temperatura de degeneración cuántica, típicamente del orden de nK. En éstas condiciones, en una trampa armónica tridimensional (3D), los bosones que interaccionan débilmente condensan y forman un Condensado de Bose Einstein (BEC). Cuando se carga un BEC en un retículo óptico producido por ondas estacionarias de luz láser, se producen nuevos fenómenos físicos. Estos sistemas entonces realizan modelos de tipo Hubbard y pueden ser llevados a regimenes fuertemente correlacionados.En 1989, M. Fisher et. al. predecían que el modelo de Bose-Hubbard homogéneo (BH) presenta la transición de fase cuántica Superfluid-Mott insulator (SF-MI). En 2002, la transición entre éstas dos fases fue observada experimentalmente por primera vez en el grupo de T. Esslinger e I. Bloch. La realización experimental de un BEC dipolar de cromo en el grupo de T. Pfau, y los progresos recientes en las técnicas de enfriamiento y atrapamiento de moléculas dipolares en los grupos de D. Jin e J. Ye, han abierto el camino hacia los gases cuánticos ultra-fríos dominados por la interacción dipolar. La evolución natural, y el reto de hoy en día por parte experimental, es de cargar BEC dipolares en retículos ópticos y estudiar los gases dipolares fuertemente correlacionados.Antes de éste trabajo de doctorado, estudios sobre modelos de BH con interacciones extendidas a los primeros vecinos mostraron la evidencia de nuevas fases cuánticas, como el supersólido (SS) y la fase checkerboard (CB). Debido al carácter de largo alcance de la interacción dipolo-dipolo, que decae con la potencia cúbica inversa de la distancia, es necesario incluir más de un primer vecino para obtener una descripción fiel y cuantitativa de los sistemas dipolares. De hecho, al incluir más vecinos se permiten y se estabilizan aún más nuevas fases.En esta tesis estudiamos modelos de BH con interacciones dipolares, investigando más allá del estado fundamental. Estudiamos un retículo bidimensional (2D) donde los dipolos están polarizados en dirección perpendicular al plano 2D, dando lugar a una interacción dipolar repulsiva e isotrópica. Utilizamos aproximaciones de campo-medio y un ansatz Gutzwiller, que son suficientemente correctos y adecuados para describir este sistema. Encontramos que los gases dipolares en 2D presentan una multitud de estados metaestables de tipo MI, que compiten con el estado fundamental, de modo parecido a sistemas desordenados. Estudiamos en detalle el destino de estos estados metaestables: como pueden ser preparados de manera controlada, como pueden ser detectados, cual es su tiempo de vida debido al tunnelling, y cual es su rol en los procesos de enfriamiento. Además, encontramos que el estado fundamental está caracterizado por estados MI de tipo checkerboard con coeficiente de ocupación n fraccionario (numero medio de partículas por sitio) que depende del cut-off utilizado en el radio de alcance de la interacción. Confirmamos esta predicción estudiando el mismo sistema con métodos Quantum Monte Carlo (worm algorithm). En este caso no utilizamos ningún cut-off en el radio de alcance de la interacción, y encontramos pruebas de una "Devil's staircase" en el estado fundamental, i.e. donde las fases MI aparecen en todos los n racionales del retículo subyacente. Encontramos además, regiones de los parámetros donde el estado fundamental es supersólido, obtenido drogando los sólidos con partículas o con agujeros.En este trabajo, investigamos también como cambia la estructura precedente en 3D. Nos focalizamos en el retículo 3D más sencillo compuesto de dos planos 2D, en el cual los dipolos están polarizados perpendicularmente a los planos; la interacción dipolar es entonces repulsiva por partículas del mismo plano, mientras es atractiva por partículas en el mismo sitio de dos planos diferentes. En cambio suprimimos el tunnelling entre los planos, lo cual hace el sistema equivalente a una mezcla bosónica en un retículo 2D. Nuestros cálculos muestran que las partículas se juntan en parejas, y demostramos la existencia de la nueva fase cuántica Pair Super Solid (PSS).Actualmente estamos estudiando un retículo 2D donde los dipolos están libres de apuntar en ambas direcciones perpendicularmente al plano, lo cual resulta en una interacción a primeros vecinos repulsiva (atractiva) por dipolos alineados (anti-alineados). Encontramos regiones de parámetros donde el estado fundamental es ferromagnético u anti-ferromagnético, y encontramos pruebas de la existencia de la fase cuántica Counterflow Super Solid (CSS).Las nuestras predicciones tienen directas consecuencias experimentales, y esperamos que vengan pronto controladas en experimentos con gases dipolares atómicos y moleculares ultra-fríos. / This thesis is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules, cooled below the quantum degeneracy temperature, typically in the nK range. In such conditions, in a three-dimensional (3D) harmonic trap, weakly interacting bosons condense and form a Bose-Einstein Condensate (BEC). When a BEC is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur.These systems realize then Hubbard-type models and can be brought to a strongly correlated regime. In 1989, M. Fisher et. al. predicted that the homogeneous Bose-Hubbard model (BH) exhibits the Superfluid-Mott insulator (SF-MI) quantum phase transition. In 2002 the transition between these two phases were observed experimentally for the first time in the group of T. Esslinger and I. Bloch. The experimental realisation of a dipolar BEC of Chromium by the group of T. Pfau, and the recent progresses in trapping and cooling of dipolar molecules by the groups of D. Jin and J. Ye, have opened the path towards ultra-cold quantum gases with dominant dipole interactions. A natural evolution and present challenge, on the experimental side is then to load dipolar BECs into optical lattices and study strongly correlated ultracold dipolar lattice gases.Before this PhD work, studies of BH models with interactions extended to nearest neighbours had pointed out that novel quantum phases, like supersolid (SS) and checkerboard phases (CB) are expected. Due to the long-range character of the dipole-dipole interaction, which decays as the inverse cubic power of the distance, it is necessary to include more than one nearest neighbour to have a faithful quantitative description of dipolar systems. In fact, longer-range interactions tend to allow for and stabilize more novel phases.In this thesis we study BH models with dipolar interactions, going beyond the ground state search. We consider a two-dimensional (2D) lattice where the dipoles are polarized perpendicularly to the 2D plane, resulting in an isotropic repulsive interaction. We use the mean-field approximations and a Gutzwiller ansatz which are quite accurate and suitable to describe this system. We find that dipolar bosonic gas in 2D exhibits a multitude of insulating metastable states, often competing with the ground state, similarly as in a disordered system. We study in detail the fate of these metastable states: how can they be prepared on demand, how they can be detected, what is their lifetime due to tunnelling, and what is their role in various cooling schemes. Moreover, we find that the ground state is characterized by insulating checkerboard-like states with fractional filling factors v(average number of particles per site) that depend on the cut-off used for the interaction range. We confirm this prediction by studying the same system with Quantum Monte Carlo methods (the worm algorithm). In this case no cut-off is used, and we find evidence for a Devil's staircase in the ground state, i.e. where insulating phases appear at all rational of the underlying lattice. We also find regions of parameters where the ground state is a supersolid, obtained by doping the solids either with particles or vacancies.In this work, we also investigate how the previous scenario changes in 3D. We focus on the simplest 3D lattice composed of two 2D layers in which the dipoles are polarized perpendicularly to the planes; the dipolar interaction is then repulsive for particles laying on the same plane, while it is attractive for particles at the same lattice site on different layers. Instead we consider inter-layer tunnelling to be suppressed, which makes the system analogous to a bosonic mixture in a 2D lattice. Our calculations show that particles pair into composites, and demonstrate the existence of the novel Pair Super Solid (PSS) quantum phase.Currently we are studying a 2D lattice where the dipoles are free to point in both directions perpendicularly to the plane, which results in a nearest neighbour repulsive (attractive) interaction for aligned (antialigned) dipoles. We find regions of parameters where the ground state is ferromagnetic or antiferromagnetic, and find evidences for the existence of a Counterflow Super Solid (CSS) quantum phase.Our predictions have direct experimental consequences, and we hope that they will be soon checked in experiments with ultracold dipolar atomic and molecular gases.
|
9 |
Études spectroscopiques des nouveaux états électroniques induits par fort couplage spin-orbite dans les iridates / Spectroscopic studies of novel electronic states induced by strong spin-orbit coupling in iridatesLouat, Alex 04 December 2018 (has links)
L'étude de l'état isolant de Mott est un des domaines très actif de la recherche en matière condensée car les fortes corrélations qui en sont à l'origine donnent naissance à des états de la matière très variés et avec des applications potentielles. Sr₂IrO₄ est un isolant de Mott exotique car induit par un fort couplage spin-orbite. Il permet d'étudier l'impact des corrélations électroniques sur les propriétés de basses énergies sous un angle nouveau. L'objet de cette thèse est l'étude expérimentale des propriétés électroniques de ces composés iridates par des mesures d'ARPES permettant des observations directes de la structure électronique dans l'espace réciproque et de RMN et μSR, qui donnent une vision locale dans l'espace réel. Nous nous sommes en particulier intéressés à la transition isolant métal pouvant survenir en dopant ce composé. Une façon originale de doper Sr₂IrO₄ que nous avons étudiée en détails est de substituer l'iridium par du rhodium. Les deux sont isovalents, mais le rhodium capture un électron conduisant à un dopage effectif en trous. Grâce à l’ARPES, nous avons mis en évidence les différentes bandes de la structure électronique. Nous avons étudié attentivement le caractère orbital de ces bandes et mis en évidence des anisotropies résiduelles en certains points de l’espace réciproque, survivant malgré la présence du fort couplage spin-orbite. Ceci, ainsi que des effets de repliement de la structure électronique, donnent lieu à des variations brutales d'intensité, qui doivent être prises en compte pour analyser correctement les spectres. Lors du dopage avec le Rh, la phase métallique obtenue reste très incohérente, avec une absence de pic de quasiparticule et un pseudogap uniforme sur l'ensemble de la surface de Fermi. Le gap de Mott ne semble pas se fermer. Le pseudogap peut révéler une brisure de symétrie mais aussi l’effet du désordre introduit par le Rh et nous discuterons son origine, en lien avec la physique d’autres systèmes corrélés. Nous montrons que pour de faibles taux de substitution Ir/Rh, l’ajout de porteurs trous contrôle le comportement du système alors qu’à des taux de substitutions plus élevés, le nombre de porteurs est stable mais le désordre augmente et contrôle à son tour la physique. Nous nous sommes aussi intéressés aux propriétés électroniques et magnétiques sondées par la RMN de l'oxygène 17 sur poudre et poudre orientée et par μSR. La RMN permet de différencier les deux sites d'oxygène de Sr₂IrO₄ nous permettant de déterminer certains paramètres nucléaires préalables à l'étude fine des propriétés électroniques. Dans le composé pur, nous avons étudié la transition magnétique et observé ce qui semble être le développement d'un moment sur l'oxygène apical. Dans les composés dopés, nous ne voyons pas de désordre structural important malgré des taux de dopage allant jusqu'à 15% de rhodium. Les propriétés magnétiques présentent néanmoins des signes d’inhomogénéité, plus marqués dans le cas du dopage lanthane. Les fluctuations dans le composé métallique montrant une prédominance des corrélations antiferromagnétiques. De son côté, la μSR a permis de construire le diagramme de phases de la transition antiferromagnétique et de mettre en évidence l'inhomogénéité de la transition magnétique dans les échantillons faiblement dopés. À basse température, nous confirmons que la phase magnétique évolue, peut-être avec l’apparition d’un moment sur l’oxygène, et cet effet est même renforcé dans les composés faiblement dopés. Au-dessus de la température de transition antiferromagnétique, nous n'avons pas trouvé de signature d'une transition vers une phase de boucles de courant observée par d'autres techniques. Cette étude permet d’attribuer à Sr₂IrO₄ dopé rhodium le caractère assez rare de matériau 2D fortement corrélé à désordre contrôlé. De manière plus générale, cet exemple devrait permettre de mieux comprendre les effets éventuels de désordre associés à d’autre façons de doper les iridates. / The study of the insulating Mott state is a very active field of research in condensed matter because of the strong correlations usually at play which can lead to a large variety of states of matter, with potential applications. Sr₂IrO₄ is an exotic Mott insulator because it is induced by a strong spin-orbit coupling. It allows studying the impact of electronic correlations on the low energy properties from a new viewpoint. The subject of this thesis is the experimental study of the electronic properties of these iridate compounds by ARPES measurements allowing direct observations of the electronic structure in reciprocal space and NMR and μSR, which give a local view in real space. We have in particular studied the metal to insulator transition which can occur in this compound upon doping. An original way to dope Sr₂IrO₄ that we have investigated in details is to substitute iridium by rhodium. Both are isovalent but the rhodium captures an electron leading to an effective hole doping. Thanks to ARPES we have identified the different bands in the electronic structure. We have studied in details the orbital character of these bands and pointed out residual anisotropies at some points in the reciprocal space, which survive despite the strong spin-orbit coupling. This, as well as the folding effects of the electronic structure, give rise to sudden variations in intensity, which must be taken into account in order to correctly analyze the spectra. Upon doping with Rh, the obtained metallic phase remains very incoherent, with no quasiparticle peak and a uniform pseudogap over the full Fermi surface. The Mott gap does not seem to be closing. The pseudogap can reveal symmetry breaking but also the effect of the disorder introduced by the Rh and we will discuss its origin, in relation to the physics of other correlated systems. We show that for low Ir/Rh substitution rates, the addition of hole carriers controls the behavior of the system while at higher substitution rates, the number of carriers is stable but the disorder increases and in turn controls physics.We were also interested in the electronic and magnetic properties probed by 17 oxygen NMR on powder and oriented powder samples and by μSR. NMR makes it possible to differentiate the two oxygen sites in Sr₂IrO₄ allowing determining some nuclear parameters necessary to the fine study of the electronic properties. In the pure compound, we have studied the magnetic transition and observed what appears to be the development of a moment on the apical oxygen. In the doped compounds, we do not see any significant structural disorder despite doping levels up to 15% rhodium. However, the magnetic properties nevertheless show signs of inhomogeneity, which are more pronounced in the case of lanthanum doping. The fluctuations in the correlated metal compound show a predominance of antiferromagnetic correlations. From our μSR investigation, we could construct the magnetic phase diagram which highlights the inhomogeneity of the magnetic transition in the low-doped samples. At low temperature, we confirm that the magnetic phase evolves, perhaps with the appearance of a moment on the oxygen, and this effect is even enhanced in the lightly doped compounds. Above the antiferromagnetic transition temperature, we did not find signatures of the current loop phase observed by other techniques. This study makes it possible to attribute to Sr₂IrO₄ doped with rhodium the rather rare character of strongly correlated 2D material with controlled disorder. More generally, this example should provide a better understanding of the potential effects of disorder associated with other ways to dope iridates.
|
10 |
Collisional stability of localized metastable ytterbium atoms immersed in a Fermi sea of lithium / リチウム原子フェルミ縮退気体中の局在準安定状態イッテルビウム原子の衝突安定性Konishi, Hideki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20161号 / 理博第4246号 / 新制||理||1611(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 高橋 義朗, 教授 田中 耕一郎, 教授 川上 則雄 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
Page generated in 0.0736 seconds