• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Morphodynamics of Motunau Beach and Management Implications

Foster, Duncan James January 2010 (has links)
Motunau Beach is situated upon a small coastal promontory which is approximately 3 km in length. Around this promontory a complex of coastal processes are interacting. In the past there has been concern for people s property due to eroding sandstone cliffs. In response to the erosion hazard piecemeal structural solutions have been sought; however, due to their short longevity have proved inadequate. Based on regular shoreline profiling and observations in conjunction with a broad international literature base, the processes of wave refraction, cliff erosion, river mouth dynamics, and sand beach adjustment have been discussed. Sediment transport pathways have been inferred based upon the natural and human processes around the promontory and the morphological response since the 1950s. To analyse the coastal processes and morphological change at Motunau Beach a combination of qualitative and quantitative research methods have been used. The field study period of three months, July to September 2009, has focussed on the shortduration and high-frequency processes of change and nested within a broader context of coastal change since the 1950s. Initial results suggest that between the years 1950 to 1968 there was a loss of beach width on Sandy Bay of approximately 25 m. This was then followed by an increased rate of cliff erosion during the 1980s. Analysis of historical hindcast wave data since 1979 suggests the wave climate at Motunau is not distinctive from the rest of the east coast; however, the processes of wave refraction within the nearshore create a turbulent and dynamic nearshore wave environment which has implications on shoreline morphology. Results from this study indicate that nearshore sediment supplies are being exhausted by a increasing wave height of approximately 4 mm yr-1 since 1979. The turbulent wave environment of the nearshore zone at Motunau Beach is encouraging the offshore transfer of nearshore sediment supplies to a depth beyond the reworking of waves during swell condition. This has obvious implications for the long-term shoreline morphology at Motunau and shoreline protection from highintensity low frequency wave events.
2

Implications of past and future vegetation change for the lizard fauna of Motunau Island

Bannock, Carol A. January 1998 (has links)
Abundance, distribution and habitat preferences of the lizard species present on Motunau Island, off the Canterbury coast of New Zealand, were investigated. The aim of the study was to investigate the extent to which recent vegetation change on Motunau Island has effected the lizard community and what implications this has for the future management of the Island. Three species of lizard occur on Motunau Island; the common gecko (Hoplodactylus maculatus), common skink (Oligosoma nigriplantare polychroma) and spotted skink (O. lineoocellatum). Rabbits (Oryctolagus cuniculus) were present on the island from 1862 until their eradication in 1962. Since then, vegetation on the island has changed from being tussock-dominated to being dominated by exotic weeds. Data from lizard pitfall trap surveys carried out in 1967-75 by Tony Whitaker of the Department of Scientific and Industrial Research (DSIR) were compared with new pitfall trapping data to determine if changes in the lizard population had occurred in response to these vegetation changes. The abundance of O. n. polychroma and H. maculatus does not appear to change significantly. The distribution of these two species were significantly correlated but neither showed any preference for a particular type. The abundance of O. lineoocellatum was significantly greater in 1996/97 than in the earlier DSlR surveys. This could be a result of the vegetation becoming more open and more structurally complex since the early surveys. This would offer greater opportunities for O. lineoocellatum (which is strongly heliothermic) to thermoregulate and forage. O. lineoocellatum showed no consistent significant preference towards any habitat type, although they tended to be found more in 'margin' habitat. Research into pitfall trapping and the way lizard behaviour may influence pitfall trapping data needs to be undertaken as there is a possible trap bias in this study. Management of Motunau Island needs to ensure that a structurally complex environment is maintained to ensure high numbers of all three lizard species can continue to coexist.
3

Sedimentology, stratigraphy and palaeogeography of Oligocene to Miocene rocks of North Canterbury-Marlborough

Irvine, Janelle Rose Mae January 2012 (has links)
The Cenozoic was a time of climatic, tectonic and eustatic change in the Southern Hemisphere. Cooling at the pole, glaciation and substantial sea ice formation occurred as latitudinal temperature gradients increased and tectonics altered Southern Hemisphere circulation patterns. During this same time frame, the tectonic regime of the New Zealand continental block transitioned from a passive margin to an active plate boundary, resulting in the reversal of a long-standing transgression and an influx of terrigenous sediment to marine basins. In this transition, depositional basins in the South Island became more localized; however, the influence of oceanographic and tectonic drivers is poorly understood on a local scale. Here we apply sedimentological, biostratigraphic and geochemical analyses to revise understanding of the effects of the changing climatic regime and active tectonics on the development of Oligocene and Miocene rocks in the Northern Canterbury Basin. The Late Oligocene to Middle Miocene sedimentary rocks of the northern Canterbury Basin record oceanographic and tectonic influences on basin formation, sediment supply and deposition. The Palaeocene to Late Eocene Amuri Formation in the basin are micrites and biogenic cherts recording deepwater, terrigenous-starved environments, and do not show any influence of active tectonics. The Early Oligocene development of ice on the Antarctic continent and the associated global sea level response is reflected in this basin as the Marshall Paraconformity, an eroded, glauconitized and phosphatised firm ground and hardground atop the Amuri. Sedimentation above this unconformity resumed in the Late Oligocene-Early Miocene with cleaner, deep-water, bathyal planktic foraminifera packstones and wackestones in eastern areas and Late Oligocene inner shelf volcaniclastic packstones in parts of the western basin. Post-unconformity sedimentation resumed earlier in western areas, as the currents responsible for scouring the sea floor moved progressively to the east. The development of tectonic uplift in terrestrial settings is first seen in the northwestern basin in Lower Miocene fine quartz-rich sandstones, and by the Middle Miocene, bathyal sandstones and quartz-rich wackestones appear in the basin, replacing earlier, more pure carbonates. The uplift caused shallowing to the west, in the form of shelf progradation due to sediment influx. This shallowing is not observed to the east; instead, the palaeoenvironments show a deepening as a result of sea level rise.
4

Implications of past and future vegetation change for the lizard fauna of Motunau Island

Bannock, C. A. January 1998 (has links)
Abundance, distribution and habitat preferences of the lizard species present on Motunau Island, off the Canterbury coast of New Zealand, were investigated. The aim of the study was to investigate the extent to which recent vegetation change on Motunau Island has effected the lizard community and what implications this has for the future management of the Island. Three species of lizard occur on Motunau Island; the common gecko (Hoplodactylus maculatus), common skink (Oligosoma nigriplantare polychroma) and spotted skink (O. lineoocellatum). Rabbits (Oryctolagus cuniculus) were present on the island from 1862 until their eradication in 1962. Since then, vegetation on the island has changed from being tussock-dominated to being dominated by exotic weeds. Data from lizard pitfall trap surveys carried out in 1967-75 by Tony Whitaker of the Department of Scientific and Industrial Research (DSIR) were compared with new pitfall trapping data to determine if changes in the lizard population had occurred in response to these vegetation changes. The abundance of O. n. polychroma and H. maculatus does not appear to change significantly. The distribution of these two species were significantly correlated but neither showed any preference for a particular type. The abundance of O. lineoocellatum was significantly greater in 1996/97 than in the earlier DSlR surveys. This could be a result of the vegetation becoming more open and more structurally complex since the early surveys. This would offer greater opportunities for O. lineoocellatum (which is strongly heliothermic) to thermoregulate and forage. O. lineoocellatum showed no consistent significant preference towards any habitat type, although they tended to be found more in 'margin' habitat. Research into pitfall trapping and the way lizard behaviour may influence pitfall trapping data needs to be undertaken as there is a possible trap bias in this study. Management of Motunau Island needs to ensure that a structurally complex environment is maintained to ensure high numbers of all three lizard species can continue to coexist.

Page generated in 0.0382 seconds