• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 15
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

When Does A Stream Gain The Ability To Create Its Own Channel? A Field Study In Northwest Georgia On The Conasauga River

Srymanske, Roy H 05 April 2013 (has links)
Rivers are said to be self-shaping when a stream is able to create its own morphological features. This occurs when bankfull Shields stress (τbf*) is greater than reference Shields stress (τr*). Shields stress in the channel is affected during upstream progression by the height and width of the water decreasing, the slope becoming steeper, and the bed material becoming coarser. Bankfull Shields stress decreased progressing upstream while reference Shields stress increased due to increased slope. The self-shaping portions of the Conasauga occur in areas where the relative roughness of the bed material is fully submerged or greater than 5. Once the relative submergence is no longer fully submerged the stream channel no longer produces enough bankfull Shields stress to overcome the reference Shields stress. This occurs about midway through the study. This study allows better classification of streams using Shields stress and better understanding of channel processes for hydrologic engineering.
2

Channel Morphology and Riparian Vegetation Influences on Fluvial Aquatic Habitat

Kozarek, Jessica Lindberg 23 February 2011 (has links)
As public awareness of river degradation has grown in recent years, the number of stream restoration activities has increased dramatically. Anthropogenic influences at a range of spatial scales from watershed landuse to riparian vegetation management to local channel morphology can have hierarchical relationships to local (meso- and macro-) in-stream habitat characteristics. This research examined these influences first by examining the influence of complex channel morphology on meso-scale brook trout (Salvelinus fontinalis) habitat in Shenandoah National Park, VA, and then by examining the combined influence of watershed urbanization and riparian vegetation (100-200 m reaches) on stream temperature. Moving beyond one-dimensional (1D) averaged representations of fish habitat, this research explored the distribution of two-dimensional (2D) flow complexity metrics at the meso-habitat scale as explanatory variables for brook trout habitat preferences and as potential metrics to evaluate habitat restoration design. Spatial hydraulic complexity metrics, including area-weighted circulation and kinetic energy gradients, were calculated based on 2D depth averaged modeled velocity distributions in two 100-m reaches on the Staunton River. While there were no statistically significant correlations between kinetic energy gradients or area-weighted circulation and fish density, fish density was positively correlated to the percent of the channel dominated by protruding boulders. The structural complexity of areas with protruding boulders create complex flow patterns suggesting that flow complexity plays an important role in available brook trout habitat preferences at the local scale, although the 2D depth averaged model may not have adequately represented this complexity. The 2D distribution of flow characteristics was then investigated further to quantify areas of flow refugia (low velocity shelters) and the relationship between these areas, traditional measures of habitat quality, and fish biomass. Flow complexity in the vicinity of flow obstructions (in this case, boulders) was investigated further using patch classification and landscape ecology metrics. The relative influence of riparian vegetation on stream temperature (another important habitat characteristic) in urban and nonurban watersheds was investigated in 27 paired forested and nonforested reaches in PA, MD, and DE. Riparian vegetation and watershed-scale urbanization both influence stream temperature, which can have profound impacts on in-stream ecosystems. Generally, increased urbanization and removal of riparian forest influenced maximum stream temperatures resulting in higher maximum summer stream temperatures (up to 1.8°C); however, the influence of riparian forests (at at 100-200 m reach scale) decreased with increasing urbanization. Extreme maximum summer temperatures, which are a concern for aquatic biota, increased in both frequency and duration in urban nonforested reaches relative to forested reaches indicating that the addition of a forested 100-200 m long buffer partially mitigated these temperature extremes even in urban watersheds. Overall, changes to channel morphology and riparian vegetation had measurable local effects on stream habitat (temperature and hydraulic complexity) yet the implications of restoration efforts at the local scale on ecosystem services at a larger (km +) scale requires further study. / Ph. D.
3

Large Wood Dynamics in Central Appalachian Hemlock Headwater Ravines

Soltesz, Paul J. January 2014 (has links)
No description available.
4

Flow and sediment movement in stepped channels

Whittaker, J. G. January 1982 (has links)
Laboratory tests were undertaken to establish the formative mechanism for steps and pools in steep mountain streams. They indicated that the formation of steps and pools is associated with high intensity, low return interval events and the processes of armouring/paving and antidune formation. Lower than formative discharges give the structures their step-pool appearance, and under such discharges they are extremely stable. Step-pool streams may be modelled by a succession of artificial steps or weirs. Wooden steps were placed in a laboratory channel for this purpose, and clear water flow, clear water scour, and sediment transport tests undertaken for a range of discharges and channel slopes. Three distinct flow regimes were observed for the clear water flow and clear water scour tests. They were stable tumbling flow, unstable tumbling flow, and shooting flow. Sediment transport complicated the regimes from low transport rates. Unstable tumbling flow (clear water flow) at a low slope was shown to be caused by the breaking of standing waves at a theoretical maximum of 0.142. For higher slopes (and including clear water scour tests), unstable tumbling flow was shown to be associated with the physical system geometry preventing the submerged hydraulic jump from developing fully. However, unstable tumbling flow was also caused at lower discharges by sediment waves which were a feature of some test runs with sediment transport. Even so, unstable tumbling flow is likely to occur under field conditions only rarely. With clear water scour, the scour dimensions corresponded to the ultimate static limit. That is, no sediment remains suspended by jet action as occurs for the dynamic limit of scour. For clear water flow and clear water scour, resistance to flow may be predicted by logarithmic equations. Resistance to flow with sediment transport correlated strongly with the average scour hole size. A sudden increase in average (and maximum) velocities indicated that with sediment transport, the erosive ability of a step-pool system may increase sharply as pools become drowned by sediment. For a given discharge, increasing the sediment transport rate beyond this drowning led to net deposition, but no real increase in average velocity. With sediment transport, sediment waves and water waves occurred (independently) despite steady inputs of both water and sediment. This behaviour parallels reports of sediment movement as waves in mountain streams. This tendency toward non-uniformity of water and sediment motion suggests that such behaviour may be explicable in terms of recent advances in nonlinear thermodynamics.
5

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
6

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
7

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
8

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
9

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.
10

The geomorphology of Southeast Australian mountain streams

Thompson, Chris J., Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2006 (has links)
This thesis is a study of the morphology and sediment transport dynamics of mountain streams in southeast Australia. Mountain streams represent important geomorphological and ecological systems in Australia which have hitherto been poorly studied. The variability of mountain stream reach morphology was investigated at the regional scale using topographical surveys and sediment sampling techniques. Study sites were stratified by slope and local lithology. Eight channel-morphologies including Bedrock, Cascade, Step-pool, Planebed, Pool-Riffle, Cascade-pool, Riffle-step and Infilled, were identified using an objective statistical approach. Overall, channel types were found to correspond to existing reach-scale mountain stream templates. Five morphologies were associated with a specific lithology type which controlled the size and shape of grains supplied to the channels. Differences in coarse sediment transport processes between morphologies were investigated using stream monitoring techniques and Optically Stimulated Luminescence (OSL) dating. Monitoring results from a 3 year period indicated that channel beds are resistant to entrainment with shear stress thresholds for bedload transport ranging between 64 to 74 N/m2. Transport of reach median grain sizes requires floods that exceed bankfull discharge. Existing competence equations were found to over-predict the hydraulic driving force and consequently, a modified entrainment model was used to account for the regional channel characteristics. OSL dating was investigated as a tool to provide data on long-term sediment transport processes. Minimum age model results from the OSL dates show overall agreement with a selected entrainment model, and indicate differences in sediment transport dynamics between some reach morphology types. A regime model was used to quantify the physical domains of different channel morphologies. Limitations of the model were overcome by modifying the sediment supply surrogate to better reflect the dominant transported bedload size. Morphology types were delineated according to different sediment transport capacity-sediment supply domains. The distribution of channel morphology types within a series of catchments in southeast Australia was modelled within a GIS platform using the diagnostics of reach morphology derived from this study. The model provides a conceptual framework to evaluate the potential link between channel form, potential habitat diversity and aquatic biodiversity within the channel network in mountain streams.

Page generated in 0.0565 seconds