• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CALIBRATION OF THE MU2E ABSOLUTE MOMENTUM SCALE USING POSITIVE PION DECAYS TO POSITRON AND ELECTRON NEUTRINO

Xiaobing Shi (18421551) 22 April 2024 (has links)
<p dir="ltr">The Mu2e experiment will search for neutrinoless, coherent conversion of a muon into an</p><p dir="ltr">electron in the field of an aluminum nucleus (μ−N ! e−N) at the sensitivity level of 10−17.</p><p dir="ltr">This conversion process is an example of Charged Lepton Flavor Violation (CLFV), which</p><p dir="ltr">has never been observed experimentally before. The Mu2e experiment tracker is designed</p><p dir="ltr">to accurately detect the 105 MeV/c conversion electron (CE) momentum in a uniform 1 T</p><p dir="ltr">magnetic field. The mono-energetic positrons (e+) at 69.8 MeV from the decay of positively charged</p><p dir="ltr">pions (p+) that have stopped in the aluminum stopping target are investigated as a</p><p dir="ltr">calibration source to measure the accuracy of absolute momentum scale. The backgrounds</p><p dir="ltr">for the calibration arise from μ+ decay-in-flight (DIF) backgrounds and other stopped p+</p><p dir="ltr">decays that produce reconstructed e+ tracks mimicking a signal trajectory originating from</p><p dir="ltr">the stopping target. The most significant background is the μ-DIF background. Therefore,</p><p dir="ltr">we identified the need for a momentum degrader placed at the entry of the Detector Solenoid,</p><p dir="ltr">to increase the pion stops in the stopping target and suppress the μ-DIF background. The</p><p dir="ltr">material of the degrader is chosen to be titanium (Ti). The thickness of degrader is optimized</p><p dir="ltr">by the pion stops efficiency to muon flux efficiency ratio and the 4mm Ti degrader is the</p><p dir="ltr">optimized one. The calibration signal and backgrounds are simulated with the 3mm and</p><p dir="ltr">4mm Ti degrader. The ratio of S/B is used as a figure of merit, S/B ? 1.85 for the 3mm Ti</p><p dir="ltr">degrader and S/B ? 2.93 for the 4mm Ti degrader. The 4mm Ti degrader performs better</p><p dir="ltr">than the 3mm Ti degrader in terms of S/B ratio. By fitting the reconstructed momentum</p><p dir="ltr">spectra of signal and backgrounds, we extract the signal distribution peak and width of</p><p dir="ltr">x0 = 69.268 ± 0.013 MeV/c and ? = 0.324 ± 0.009 MeV/c (with the 3mm Ti degrader),</p><p dir="ltr">x0 = 69.263 ± 0.013 MeV/c and ? = 0.299 ± 0.009 MeV/c (with the 4mm Ti degrader).</p><p dir="ltr">We also show that the peak shifts by backgrounds for both degraders are within 100 keV/c</p><p dir="ltr">momentum scale accuracy requirement.</p>

Page generated in 0.1055 seconds