Spelling suggestions: "subject:"mudanças dde conceitos"" "subject:"mudanças dee conceitos""
1 |
Employing nonlinear time series analysis tools with stable clustering algorithms for detecting concept drift on data streams / Aplicando ferramentas de análise de séries temporais não lineares e algoritmos de agrupamento estáveis para a detecção de mudanças de conceito em fluxos de dadosCosta, Fausto Guzzo da 17 August 2017 (has links)
Several industrial, scientific and commercial processes produce open-ended sequences of observations which are referred to as data streams. We can understand the phenomena responsible for such streams by analyzing data in terms of their inherent recurrences and behavior changes. Recurrences support the inference of more stable models, which are deprecated by behavior changes though. External influences are regarded as the main agent actuacting on the underlying phenomena to produce such modifications along time, such as new investments and market polices impacting on stocks, the human intervention on climate, etc. In the context of Machine Learning, there is a vast research branch interested in investigating the detection of such behavior changes which are also referred to as concept drifts. By detecting drifts, one can indicate the best moments to update modeling, therefore improving prediction results, the understanding and eventually the controlling of other influences governing the data stream. There are two main concept drift detection paradigms: the first based on supervised, and the second on unsupervised learning algorithms. The former faces great issues due to the labeling infeasibility when streams are produced at high frequencies and large volumes. The latter lacks in terms of theoretical foundations to provide detection guarantees. In addition, both paradigms do not adequately represent temporal dependencies among data observations. In this context, we introduce a novel approach to detect concept drifts by tackling two deficiencies of both paradigms: i) the instability involved in data modeling, and ii) the lack of time dependency representation. Our unsupervised approach is motivated by Carlsson and Memolis theoretical framework which ensures a stability property for hierarchical clustering algorithms regarding to data permutation. To take full advantage of such framework, we employed Takens embedding theorem to make data statistically independent after being mapped to phase spaces. Independent data were then grouped using the Permutation-Invariant Single-Linkage Clustering Algorithm (PISL), an adapted version of the agglomerative algorithm Single-Linkage, respecting the stability property proposed by Carlsson and Memoli. Our algorithm outputs dendrograms (seen as data models), which are proven to be equivalent to ultrametric spaces, therefore the detection of concept drifts is possible by comparing consecutive ultrametric spaces using the Gromov-Hausdorff (GH) distance. As result, model divergences are indeed associated to data changes. We performed two main experiments to compare our approach to others from the literature, one considering abrupt and another with gradual changes. Results confirm our approach is capable of detecting concept drifts, both abrupt and gradual ones, however it is more adequate to operate on complicated scenarios. The main contributions of this thesis are: i) the usage of Takens embedding theorem as tool to provide statistical independence to data streams; ii) the implementation of PISL in conjunction with GH (called PISLGH); iii) a comparison of detection algorithms in different scenarios; and, finally, iv) an R package (called streamChaos) that provides tools for processing nonlinear data streams as well as other algorithms to detect concept drifts. / Diversos processos industriais, científicos e comerciais produzem sequências de observações continuamente, teoricamente infinitas, denominadas fluxos de dados. Pela análise das recorrências e das mudanças de comportamento desses fluxos, é possível obter informações sobre o fenômeno que os produziu. A inferência de modelos estáveis para tais fluxos é suportada pelo estudo das recorrências dos dados, enquanto é prejudicada pelas mudanças de comportamento. Essas mudanças são produzidas principalmente por influências externas ainda desconhecidas pelos modelos vigentes, tal como ocorre quando novas estratégias de investimento surgem na bolsa de valores, ou quando há intervenções humanas no clima, etc. No contexto de Aprendizado de Máquina (AM), várias pesquisas têm sido realizadas para investigar essas variações nos fluxos de dados, referidas como mudanças de conceito. Sua detecção permite que os modelos possam ser atualizados a fim de apurar a predição, a compreensão e, eventualmente, controlar as influências que governam o fluxo de dados em estudo. Nesse cenário, algoritmos supervisionados sofrem com a limitação para rotular os dados quando esses são gerados em alta frequência e grandes volumes, e algoritmos não supervisionados carecem de fundamentação teórica para prover garantias na detecção de mudanças. Além disso, algoritmos de ambos paradigmas não representam adequadamente as dependências temporais entre observações dos fluxos. Nesse contexto, esta tese de doutorado introduz uma nova metodologia para detectar mudanças de conceito, na qual duas deficiências de ambos paradigmas de AM são confrontados: i) a instabilidade envolvida na modelagem dos dados, e ii) a representação das dependências temporais. Essa metodologia é motivada pelo arcabouço teórico de Carlsson e Memoli, que provê uma propriedade de estabilidade para algoritmos de agrupamento hierárquico com relação à permutação dos dados. Para usufruir desse arcabouço, as observações são embutidas pelo teorema de imersão de Takens, transformando-as em independentes. Esses dados são então agrupados pelo algoritmo Single-Linkage Invariante à Permutação (PISL), o qual respeita a propriedade de estabilidade de Carlsson e Memoli. A partir dos dados de entrada, esse algoritmo gera dendrogramas (ou modelos), que são equivalentes a espaços ultramétricos. Modelos sucessivos são comparados pela distância de Gromov-Hausdorff a fim de detectar mudanças de conceito no fluxo. Como resultado, as divergências dos modelos são de fato associadas a mudanças nos dados. Experimentos foram realizados, um considerando mudanças abruptas e o outro mudanças graduais. Os resultados confirmam que a metodologia proposta é capaz de detectar mudanças de conceito, tanto abruptas quanto graduais, no entanto ela é mais adequada para cenários mais complicados. As contribuições principais desta tese são: i) o uso do teorema de imersão de Takens para transformar os dados de entrada em independentes; ii) a implementação do algoritmo PISL em combinação com a distância de Gromov-Hausdorff (chamado PISLGH); iii) a comparação da metodologia proposta com outras da literatura em diferentes cenários; e, finalmente, iv) a disponibilização de um pacote em R (chamado streamChaos) que provê tanto ferramentas para processar fluxos de dados não lineares quanto diversos algoritmos para detectar mudanças de conceito.
|
2 |
Employing nonlinear time series analysis tools with stable clustering algorithms for detecting concept drift on data streams / Aplicando ferramentas de análise de séries temporais não lineares e algoritmos de agrupamento estáveis para a detecção de mudanças de conceito em fluxos de dadosFausto Guzzo da Costa 17 August 2017 (has links)
Several industrial, scientific and commercial processes produce open-ended sequences of observations which are referred to as data streams. We can understand the phenomena responsible for such streams by analyzing data in terms of their inherent recurrences and behavior changes. Recurrences support the inference of more stable models, which are deprecated by behavior changes though. External influences are regarded as the main agent actuacting on the underlying phenomena to produce such modifications along time, such as new investments and market polices impacting on stocks, the human intervention on climate, etc. In the context of Machine Learning, there is a vast research branch interested in investigating the detection of such behavior changes which are also referred to as concept drifts. By detecting drifts, one can indicate the best moments to update modeling, therefore improving prediction results, the understanding and eventually the controlling of other influences governing the data stream. There are two main concept drift detection paradigms: the first based on supervised, and the second on unsupervised learning algorithms. The former faces great issues due to the labeling infeasibility when streams are produced at high frequencies and large volumes. The latter lacks in terms of theoretical foundations to provide detection guarantees. In addition, both paradigms do not adequately represent temporal dependencies among data observations. In this context, we introduce a novel approach to detect concept drifts by tackling two deficiencies of both paradigms: i) the instability involved in data modeling, and ii) the lack of time dependency representation. Our unsupervised approach is motivated by Carlsson and Memolis theoretical framework which ensures a stability property for hierarchical clustering algorithms regarding to data permutation. To take full advantage of such framework, we employed Takens embedding theorem to make data statistically independent after being mapped to phase spaces. Independent data were then grouped using the Permutation-Invariant Single-Linkage Clustering Algorithm (PISL), an adapted version of the agglomerative algorithm Single-Linkage, respecting the stability property proposed by Carlsson and Memoli. Our algorithm outputs dendrograms (seen as data models), which are proven to be equivalent to ultrametric spaces, therefore the detection of concept drifts is possible by comparing consecutive ultrametric spaces using the Gromov-Hausdorff (GH) distance. As result, model divergences are indeed associated to data changes. We performed two main experiments to compare our approach to others from the literature, one considering abrupt and another with gradual changes. Results confirm our approach is capable of detecting concept drifts, both abrupt and gradual ones, however it is more adequate to operate on complicated scenarios. The main contributions of this thesis are: i) the usage of Takens embedding theorem as tool to provide statistical independence to data streams; ii) the implementation of PISL in conjunction with GH (called PISLGH); iii) a comparison of detection algorithms in different scenarios; and, finally, iv) an R package (called streamChaos) that provides tools for processing nonlinear data streams as well as other algorithms to detect concept drifts. / Diversos processos industriais, científicos e comerciais produzem sequências de observações continuamente, teoricamente infinitas, denominadas fluxos de dados. Pela análise das recorrências e das mudanças de comportamento desses fluxos, é possível obter informações sobre o fenômeno que os produziu. A inferência de modelos estáveis para tais fluxos é suportada pelo estudo das recorrências dos dados, enquanto é prejudicada pelas mudanças de comportamento. Essas mudanças são produzidas principalmente por influências externas ainda desconhecidas pelos modelos vigentes, tal como ocorre quando novas estratégias de investimento surgem na bolsa de valores, ou quando há intervenções humanas no clima, etc. No contexto de Aprendizado de Máquina (AM), várias pesquisas têm sido realizadas para investigar essas variações nos fluxos de dados, referidas como mudanças de conceito. Sua detecção permite que os modelos possam ser atualizados a fim de apurar a predição, a compreensão e, eventualmente, controlar as influências que governam o fluxo de dados em estudo. Nesse cenário, algoritmos supervisionados sofrem com a limitação para rotular os dados quando esses são gerados em alta frequência e grandes volumes, e algoritmos não supervisionados carecem de fundamentação teórica para prover garantias na detecção de mudanças. Além disso, algoritmos de ambos paradigmas não representam adequadamente as dependências temporais entre observações dos fluxos. Nesse contexto, esta tese de doutorado introduz uma nova metodologia para detectar mudanças de conceito, na qual duas deficiências de ambos paradigmas de AM são confrontados: i) a instabilidade envolvida na modelagem dos dados, e ii) a representação das dependências temporais. Essa metodologia é motivada pelo arcabouço teórico de Carlsson e Memoli, que provê uma propriedade de estabilidade para algoritmos de agrupamento hierárquico com relação à permutação dos dados. Para usufruir desse arcabouço, as observações são embutidas pelo teorema de imersão de Takens, transformando-as em independentes. Esses dados são então agrupados pelo algoritmo Single-Linkage Invariante à Permutação (PISL), o qual respeita a propriedade de estabilidade de Carlsson e Memoli. A partir dos dados de entrada, esse algoritmo gera dendrogramas (ou modelos), que são equivalentes a espaços ultramétricos. Modelos sucessivos são comparados pela distância de Gromov-Hausdorff a fim de detectar mudanças de conceito no fluxo. Como resultado, as divergências dos modelos são de fato associadas a mudanças nos dados. Experimentos foram realizados, um considerando mudanças abruptas e o outro mudanças graduais. Os resultados confirmam que a metodologia proposta é capaz de detectar mudanças de conceito, tanto abruptas quanto graduais, no entanto ela é mais adequada para cenários mais complicados. As contribuições principais desta tese são: i) o uso do teorema de imersão de Takens para transformar os dados de entrada em independentes; ii) a implementação do algoritmo PISL em combinação com a distância de Gromov-Hausdorff (chamado PISLGH); iii) a comparação da metodologia proposta com outras da literatura em diferentes cenários; e, finalmente, iv) a disponibilização de um pacote em R (chamado streamChaos) que provê tanto ferramentas para processar fluxos de dados não lineares quanto diversos algoritmos para detectar mudanças de conceito.
|
3 |
Avaliação criteriosa dos algoritmos de detecção de concept driftsSANTOS, Silas Garrido Teixeira de Carvalho 27 February 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-07-11T12:33:28Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
silas-dissertacao-versao-final-2016.pdf: 1708159 bytes, checksum: 6c0efc5f2f0b27c79306418c9de516f1 (MD5) / Made available in DSpace on 2016-07-11T12:33:28Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
silas-dissertacao-versao-final-2016.pdf: 1708159 bytes, checksum: 6c0efc5f2f0b27c79306418c9de516f1 (MD5)
Previous issue date: 2015-02-27 / FACEPE / A extração de conhecimento em ambientes com fluxo contínuo de dados é uma atividade que
vem crescendo progressivamente. Diversas são as situações que necessitam desse mecanismo,
como o monitoramento do histórico de compras de clientes; a detecção de presença por meio
de sensores; ou o monitoramento da temperatura da água. Desta maneira, os algoritmos
utilizados para esse fim devem ser atualizados constantemente, buscando adaptar-se às
novas instâncias e levando em consideração as restrições computacionais. Quando se
trabalha em ambientes com fluxo contínuo de dados, em geral não é recomendável supor
que sua distribuição permanecerá estacionária. Diversas mudanças podem ocorrer ao longo
do tempo, desencadeando uma situação geralmente conhecida como mudança de conceito
(concept drift). Neste trabalho foi realizado um estudo comparativo entre alguns dos
principais métodos de detecção de mudanças: ADWIN, DDM, DOF, ECDD, EDDM, PL e
STEPD. Para execução dos experimentos foram utilizadas bases artificiais – simulando
mudanças abruptas, graduais rápidas, e graduais lentas – e também bases com problemas
reais. Os resultados foram analisados baseando-se na precisão, tempo de execução, uso
de memória, tempo médio de detecção das mudanças, e quantidade de falsos positivos e
negativos. Já os parâmetros dos métodos foram definidos utilizando uma versão adaptada
de um algoritmo genético. De acordo com os resultados do teste de Friedman juntamente
com Nemenyi, em termos de precisão, DDM se mostrou o método mais eficiente com as
bases utilizadas, sendo estatisticamente superior ao DOF e ECDD. Já EDDM foi o método
mais rápido e também o mais econômico no uso da memória, sendo superior ao DOF,
ECDD, PL e STEPD, em ambos os casos. Conclui-se então que métodos mais sensíveis
às detecções de mudanças, e consequentemente mais propensos a alarmes falsos, obtêm
melhores resultados quando comparados a métodos menos sensíveis e menos suscetíveis a
alarmes falsos. / Knowledge extraction from data streams is an activity that has been progressively receiving
an increased demand. Examples of such applications include monitoring purchase history
of customers, movement data from sensors, or water temperatures. Thus, algorithms used
for this purpose must be constantly updated, trying to adapt to new instances and taking
into account computational constraints. When working in environments with a continuous
flow of data, there is no guarantee that the distribution of the data will remain stationary.
On the contrary, several changes may occur over time, triggering situations commonly
known as concept drift. In this work we present a comparative study of some of the main
drift detection methods: ADWIN, DDM, DOF, ECDD, EDDM, PL and STEPD. For
the execution of the experiments, artificial datasets were used – simulating abrupt, fast
gradual, and slow gradual changes – and also datasets with real problems. The results
were analyzed based on the accuracy, runtime, memory usage, average time to change
detection, and number of false positives and negatives. The parameters of methods were
defined using an adapted version of a genetic algorithm. According to the Friedman test
with Nemenyi results, in terms of accuracy, DDM was the most efficient method with
the datasets used, and statistically superior to DOF and ECDD. EDDM was the fastest
method and also the most economical in memory usage, being statistically superior to
DOF, ECDD, PL and STEPD, in both cases. It was concluded that more sensitive change
detection methods, and therefore more prone to false alarms, achieve better results when
compared to less sensitive and less susceptible to false alarms methods.
|
Page generated in 0.0507 seconds