1 |
Attack Modeling and Risk Assessments in Software Defined networking (SDN)Frankeline, Tanyi January 2019 (has links)
Software Defined Networking (SDN) is a technology which provides a network architecture with three distinct layers that is, the application layer which is made up of SDN applications, the control layer which is made up of the controller and the data plane layer which is made up of switches. However, the exits different types of SDN architectures some of which are interconnected with the physical network. At the core of SDN, the control plane is physically and logically separated from the data plane. The controller is connected to the application layer through an interface known as the northbound interface and to the data plane through another interface known as the southbound interface. The centralized control plane uses APIs to communicate through the northbound and southbound interface with the application layer and the data plane layer respectively. By default, these APIs such as Restful and OpenFlow APIs do not implement security mechanisms like data encryption and authentication thus, this introduces new network security threats to the SDN architecture. This report presents a technique known as threat modeling in SDN. To achieve this technique, attack scenarios are created based on the OpenFlow SDN vulnerabilities. After which these vulnerabilities are defined as predicates or facts and rules, a framework known as multihost multistage vulnerability analysis (MulVAL) then takes these predicates and rules to produce a threat model known as attack graph. The attack graph is further used to performed quantitative risk analysis using a metric to depict the risks associated to the OpenFlow SDN model
|
2 |
A Framework for Secure Structural AdaptationSaman Nariman, Goran January 2018 (has links)
A (self-) adaptive system is a system that can dynamically adapt its behavior or structure during execution to "adapt" to changes to its environment or the system itself. From a security standpoint, there has been some research pertaining to (self-) adaptive systems in general but not enough care has been shown towards the adaptation itself. Security of systems can be reasoned about using threat models to discover security issues in the system. Essentially that entails abstracting away details not relevant to the security of the system in order to focus on the important aspects related to security. Threat models often enable us to reason about the security of a system quantitatively using security metrics. The structural adaptation process of a (self-) adaptive system occurs based on a reconfiguration plan, a set of steps to follow from the initial state (configuration) to the final state. Usually, the reconfiguration plan consists of multiple strategies for the structural adaptation process and each strategy consists of several steps steps with each step representing a specific configuration of the (self-) adaptive system. Different reconfiguration strategies have different security levels as each strategy consists of a different sequence configuration with different security levels. To the best of our knowledge, there exist no approaches which aim to guide the reconfiguration process in order to select the most secure available reconfiguration strategy, and the explicit security of the issues associated with the structural reconfiguration process itself has not been studied. In this work, based on an in-depth literature survey, we aim to propose several metrics to measure the security of configurations, reconfiguration strategies and reconfiguration plans based on graph-based threat models. Additionally, we have implemented a prototype to demonstrate our approach and automate the process. Finally, we have evaluated our approach based on a case study of our making. The preliminary results tend to expose certain security issues during the structural adaptation process and exhibit the effectiveness of our proposed metrics.
|
Page generated in 0.0232 seconds