Spelling suggestions: "subject:"multi ser"" "subject:"multi user""
81 |
Logical Superposition Coded Modulation for Wireless Video MulticastingHo, James Ching-Chih January 2009 (has links)
This thesis documents the design of logical superposition coded (SPC) modulation for implementation in wireless video multicast systems, to tackle the issues caused by multi-user channel diversity, one of the legacy problems due to the nature of wireless video multicasting. The framework generates a logical SPC modulated signal by mapping successively refinable information bits into a single signal constellation with modifications in the MAC-layer software. The transmitted logical SPC signals not only manipulatively mimic SPC signals generated by the superposition of multiple modulated signals in the conventional hardware-based SPC modulation, but also yield comparable performance gains when provided with the knowledge of information bits dependencies and receiver channel distributions. At the receiving end, the proposed approach only requires simple modifications in the MAC layer software, which demonstrates full decoding compatibility with the conventional multi-stage signal-interference cancellation (SIC) approach involving additional hardware devices. Generalized formulations for symbol error rate (SER) are derived for performance evaluations and comparisons with the conventional hardware-based approach.
|
82 |
Experimental and analytical evaluation of multi-user beamforming in wireless LANsJanuary 2012 (has links)
Adaptive beamforming is a. powerful approach to receive or transmit signals of interest in a spatially selective way in the presence of interference and noise. Recently, there has been renewed interest in adaptive beamforming driven by applications in wireless communications, where multiple-input multiple-output (MEMO) techniques have emerged as one of the key technologies to accommodate the high number of users as well as the increasing demand for new high data rate services. Beamforming techniques promise to increase the spectral efficiency of next generation wireless systems and are currently being incorporated in future industry standards. Although a significant amount of research has focused on theoretical capacity analysis, little is known about the performance of such systems in practice. In thesis, I experimentally and analytically evaluate the performance of adaptive beamforming techniques on the downlink channel of a wireless LAN. To this end. I present the design and implementation of the first multi-user beam-forming system and experimental framework for wireless LANs. Next, I evaluate the benefits of such system in two applications. First, I investigate the potential of beamforming to increase the unicast throughput through spatial multiplexing. Using extensive measurements in an indoor environment, I evaluate the impact of user separation distance, user selection, and user population size on the multiplexing gains of multi-user beamforming. I also evaluate the impact of outdated channel information due to mobility and environmental variation on the multiplexing gains of multi-user beamforming. Further, I investigate the potential of beamforming to eliminate interference at unwanted locations and thus increase spatial reuse. Second, I investigate the potential of adaptive beamforming for efficient wireless multicasting. I address the joint problem of adaptive beamformer design at the PHY layer and client scheduling at the MAC layer by proposing efficient algorithms that are amenable to practical implementation. Next, I present the implementation of the beamforming based multicast system on the WARP platform and compare its performance against that of omni-directional and switched beamforming based multicast. Finally, I evaluate the performance of multicast beamforming under client mobility and infrequent channel feedback, and propose solutions that increase its robustness to channel dynamics.
|
83 |
Communication over MIMO Multi-User Systems: Signalling and FairnessMaddah-Ali, Mohammad Ali January 2007 (has links)
Employment of the multiple-antenna transmitters/receivers in communication systems is known as a promising solution to provide high-data-rate wireless links. In the multi-user environments, the problems of signaling and fairness for multi-antenna systems have emerged as challenging problems. This dissertation deals with these problems in several multi-antenna multi-user scenarios.
In part one, a simple signaling method for the multi-antenna broadcast channels is proposed. This method reduces the MIMO broadcast system to a set of parallel channels. The proposed scheme has several desirable features in terms of: (i) accommodating users with different number of receive antennas, (ii) exploiting multi-user diversity, and (iii) requiring low feedback rate. The simulation results and analytical evaluations indicate that the achieved sum-rate is close to the sum-capacity of the underlying broadcast channel.
In part two, for multiple-antenna systems with two transmitters and two receivers, a new non-cooperative scenario of data communication is studied in which each receiver receives data from both transmitters. For such a scenario, a signaling scheme is proposed which decomposes the system into two broadcast or two multi-access sub-channels. Using the decomposition scheme, it is shown that this signaling scenario outperforms the other known non-cooperative schemes in terms of the achievable multiplexing gain. In particular for some special cases, the achieved multiplexing gain is the same as the multiplexing gain of the system, where the full cooperation is provided between the transmitters and/or between the receivers.
Part three investigates the problem of fairness for a class of systems for which a subset of the capacity region, which includes
the sum-capacity facets, forms a polymatroid structure. The main purpose is to find a point on the sum-capacity facet which satisfies a notion of fairness among active users. This problem is addressed in the cases where the complexity of achieving interior points is not feasible, and where the complexity of achieving interior points is feasible.
In part four, $K$-user memoryless interference channels are considered; where each receiver sequentially decodes the data of a subset of transmitters before it decodes the data of the designated transmitter. A greedy algorithm is developed to find the users which are decoded at each receiver and the corresponding decoding order such that the minimum rate of the users is maximized. It is proven that the proposed algorithm is optimal.
The results of the parts three and four are presented for general channels which include the multiple-antenna systems as special cases.
|
84 |
Logical Superposition Coded Modulation for Wireless Video MulticastingHo, James Ching-Chih January 2009 (has links)
This thesis documents the design of logical superposition coded (SPC) modulation for implementation in wireless video multicast systems, to tackle the issues caused by multi-user channel diversity, one of the legacy problems due to the nature of wireless video multicasting. The framework generates a logical SPC modulated signal by mapping successively refinable information bits into a single signal constellation with modifications in the MAC-layer software. The transmitted logical SPC signals not only manipulatively mimic SPC signals generated by the superposition of multiple modulated signals in the conventional hardware-based SPC modulation, but also yield comparable performance gains when provided with the knowledge of information bits dependencies and receiver channel distributions. At the receiving end, the proposed approach only requires simple modifications in the MAC layer software, which demonstrates full decoding compatibility with the conventional multi-stage signal-interference cancellation (SIC) approach involving additional hardware devices. Generalized formulations for symbol error rate (SER) are derived for performance evaluations and comparisons with the conventional hardware-based approach.
|
85 |
Coding techniques for multi-user physical layer securityPierrot, Alexandre Jean Louis J. 21 September 2015 (has links)
The fast development of wireless networks, which are intrinsically exposed to eavesdropping, has created a growing concern for confidentiality. While classical cryptographic schemes require a key provided by the end-user, physical-layer security leverages the randomness of the physical communication medium as a source of secrecy. The main benefit of physical-layer security techniques is their relatively low cost and their ability to combine with any existing security mechanisms. This dissertation provides an analysis including the theoretical study of the two-way wiretap channel to obtain a better insight into how to design coding mechanisms, practical tests with experimental systems, and the design of actual codes. From a theoretical standpoint, the study confirms the benefits of combining several multi-user coding techniques including cooperative jamming, coded cooperative jamming and secret key generation. For these different mechanisms, the trade-off between reliability, secrecy and communication rate is clarified under a stringent strong secrecy metric. Regarding the design of practical codes, spatially coupled LDPC codes, which were originally designed for reliability, are modified to develop a coded cooperative jamming code. Finally, a proof-of-principle practical wireless system is provided to show how to implement a secret key generation system on experimental programmable radios. This testbed is then used to assess the realistic performance of such systems in terms of reliability, secrecy and rate.
|
86 |
The use of massively multiplayer online games to augment early-stage design process in constructionZhang, Christina Yan January 2012 (has links)
Traditional 2-D contour models, Physical Models, Computer-Aided Architectural Design (CAD), Virtual Reality models, Google SketchUp, and Building Information Modelling (BIM) have all greatly enhanced the design process by enabling designers to visualise buildings and the space within them prior to their construction. A recent development is Massively Multiplayer Online Games (MMOG) such as Second Life (SL). These offer users the opportunity to interact with other participants in real time, and so offer an excellent opportunity to experience the environment, layout and form of virtual buildings. However, the effectiveness of such applications to some extent depends upon how realistic the interactions of those using virtual spaces are in relation to interactions within the real world. This research examines the potential of this technology for enhancing and informing the early stage building design process. Initially, the tools currently used by architects at early stages of the RIBA Plan of Work were evaluated through interviewing architects. Then, the advantages of using MMOG over current tools at early-stage design were evaluated through interviews in SL. A virtual model was developed to examine how realistic the visualisation and interaction between end-users in an MMOG was. This was used to propose and validate guidance to incorporating MMOG into the early stages of the RIBA Plan of Work. It revealed that the virtual model created, the validated guidance and a successful example combining 2D sketches, Google SketchUp and MMOG at early-stage design can be used to guide architects to manage the complex decision making process in a simple, easy, cost-effective way, while effectively engaging both professional and non-professional stakeholders.
|
87 |
Presenting the self in cyberspace: identity play in MOOSChester, Andrea Unknown Date (has links) (PDF)
The use of the Internet has increased exponentially over the last decade. Individuals across all continents are progressively engaging in cyberspace interactions at work, in education, and for leisure. These online interactions, unconstrained by the limitations of corporeal reality, offer the potential for unique presentations of the self. The general aim of the research described in this thesis was to examine self-presentation in cyberspace. The research focused on MOOs, multi-user, text-based, user-extensible online environments, as a likely site for identity experimentation and play in cyberspace. Two studies are described. In the first quantitative study, 75 university students logged on to the front page of a social MOO where they selected a screen name, chose their gender, and provided a character description. As hypothesised, self-presentations were more likely to be based on actual identity rather than hoped for or feared selves. Contrary to expectation, little evidence was found of gender play. Self-presentations were typically positively biased and results suggested that players also perceived themselves more positively in the online context. Although sex and age were generally unrelated to self-presentation strategies, previous online experience, ethnicity, and personality profiles helped to explain self-presentation behaviour. / A qualitative study of a further 20 students in an educational MOO explored players understanding of their initial self-presentational choices and their management of these self-presentations over a 12-week period. Findings from the second study were consistent with the results from the first quantitative study and confirmed a strong desire for authentic self-presentation. Despite this emphasis on authenticity, the intention to play with identity was manifest in the form of selective self-disclosure, fantasy play, and exaggeration of traits. Participants also reported behaving in less inhibited ways online. A low incidence of gender play was noted. The overt identity play assumed by the cyberspace literature was not found in either study. Rather self-presentation in the online context appears to be governed by essentially similar processes to those that shape self-presentation in the offline world. The implications of the findings for teaching and learning, particularly for educators who want to use MOOs for identity experimentation, are discussed.
|
88 |
Asymptotic Techniques for Space and Multi-User Diversity Analysis in Wireless CommunicationsJanuary 2010 (has links)
abstract: To establish reliable wireless communication links it is critical to devise schemes to mitigate the effects of the fading channel. In this regard, this dissertation analyzes two types of systems: point-to-point, and multiuser systems. For point-to-point systems with multiple antennas, switch and stay diversity combining offers a substantial complexity reduction for a modest loss in performance as compared to systems that implement selection diversity. For the first time, the design and performance of space-time coded multiple antenna systems that employ switch and stay combining at the receiver is considered. Novel switching algorithms are proposed and upper bounds on the pairwise error probability are derived for different assumptions on channel availability at the receiver. It is proved that full spatial diversity is achieved when the optimal switching threshold is used. Power distribution between training and data codewords is optimized to minimize the loss suffered due to channel estimation error. Further, code design criteria are developed for differential systems. Also, for the special case of two transmit antennas, new codes are designed for the differential scheme. These proposed codes are shown to perform significantly better than existing codes. For multiuser systems, unlike the models analyzed in literature, multiuser diversity is studied when the number of users in the system is random. The error rate is proved to be a completely monotone function of the number of users, while the throughput is shown to have a completely monotone derivative. Using this it is shown that randomization of the number of users always leads to deterioration of performance. Further, using Laplace transform ordering of random variables, a method for comparison of system performance for different user distributions is provided. For Poisson users, the error rates of the fixed and random number of users are shown to asymptotically approach each other for large average number of users. In contrast, for a finite average number of users and high SNR, it is found that randomization of the number of users deteriorates performance significantly. / Dissertation/Thesis / Ph.D. Electrical Engineering 2010
|
89 |
Practical Coding Schemes for Multi-User CommunicationsJanuary 2011 (has links)
abstract: There are many wireless communication and networking applications that require high transmission rates and reliability with only limited resources in terms of bandwidth, power, hardware complexity etc.. Real-time video streaming, gaming and social networking are a few such examples. Over the years many problems have been addressed towards the goal of enabling such applications; however, significant challenges still remain, particularly, in the context of multi-user communications. With the motivation of addressing some of these challenges, the main focus of this dissertation is the design and analysis of capacity approaching coding schemes for several (wireless) multi-user communication scenarios. Specifically, three main themes are studied: superposition coding over broadcast channels, practical coding for binary-input binary-output broadcast channels, and signalling schemes for two-way relay channels. As the first contribution, we propose an analytical tool that allows for reliable comparison of different practical codes and decoding strategies over degraded broadcast channels, even for very low error rates for which simulations are impractical. The second contribution deals with binary-input binary-output degraded broadcast channels, for which an optimal encoding scheme that achieves the capacity boundary is found, and a practical coding scheme is given by concatenation of an outer low density parity check code and an inner (non-linear) mapper that induces desired distribution of "one" in a codeword. The third contribution considers two-way relay channels where the information exchange between two nodes takes place in two transmission phases using a coding scheme called physical-layer network coding. At the relay, a near optimal decoding strategy is derived using a list decoding algorithm, and an approximation is obtained by a joint decoding approach. For the latter scheme, an analytical approximation of the word error rate based on a union bounding technique is computed under the assumption that linear codes are employed at the two nodes exchanging data. Further, when the wireless channel is frequency selective, two decoding strategies at the relay are developed, namely, a near optimal decoding scheme implemented using list decoding, and a reduced complexity detection/decoding scheme utilizing a linear minimum mean squared error based detector followed by a network coded sequence decoder. / Dissertation/Thesis / Ph.D. Electrical Engineering 2011
|
90 |
Multi-user Diversity Systems with Application to Cognitive RadioJanuary 2012 (has links)
abstract: This thesis aims to investigate the capacity and bit error rate (BER) performance of multi-user diversity systems with random number of users and considers its application to cognitive radio systems. Ergodic capacity, normalized capacity, outage capacity, and average bit error rate metrics are studied. It has been found that the randomization of the number of users will reduce the ergodic capacity. A stochastic ordering framework is adopted to order user distributions, for example, Laplace transform ordering. The ergodic capacity under different user distributions will follow their corresponding Laplace transform order. The scaling law of ergodic capacity with mean number of users under Poisson and negative binomial user distributions are studied for large mean number of users and these two random distributions are ordered in Laplace transform ordering sense. The ergodic capacity per user is defined and is shown to increase when the total number of users is randomized, which is the opposite to the case of unnormalized ergodic capacity metric. Outage probability under slow fading is also considered and shown to decrease when the total number of users is randomized. The bit error rate (BER) in a general multi-user diversity system has a completely monotonic derivative, which implies that, according to the Jensen's inequality, the randomization of the total number of users will decrease the average BER performance. The special case of Poisson number of users and Rayleigh fading is studied. Combining with the knowledge of regular variation, the average BER is shown to achieve tightness in the Jensen's inequality. This is followed by the extension to the negative binomial number of users, for which the BER is derived and shown to be decreasing in the number of users. A single primary user cognitive radio system with multi-user diversity at the secondary users is proposed. Comparing to the general multi-user diversity system, there exists an interference constraint between secondary and primary users, which is independent of the secondary users' transmission. The secondary user with high- est transmitted SNR which also satisfies the interference constraint is selected to communicate. The active number of secondary users is a binomial random variable. This is then followed by a derivation of the scaling law of the ergodic capacity with mean number of users and the closed form expression of average BER under this situation. The ergodic capacity under binomial user distribution is shown to outperform the Poisson case. Monte-Carlo simulations are used to supplement our analytical results and compare the performance of different user distributions. / Dissertation/Thesis / M.S. Electrical Engineering 2012
|
Page generated in 0.5009 seconds