• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 10
  • 10
  • 10
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a stereo-based multi-camera system for 3-D vision

Bachnak, Rafic A. January 1989 (has links)
No description available.
2

Téléprésence, immersion et interactions pour le reconstruction 3D temps-réel / Telepresence, Immersion and Interactions for Real-time 3D Reconstruction

Petit, Benjamin 21 February 2011 (has links)
Les environnements 3D immersifs et collaboratifs en ligne sont en pleine émergence. Ils posent les problématiques du sentiment de présence au sein des mondes virtuels, de l'immersion et des capacités d'interaction. Les systèmes 3D multi-caméra permettent, sur la base d'une information photométrique, d'extraire une information géométrique (modèle 3D) de la scène observée. Il est alors possible de calculer un modèle numérique texturé en temps-réel qui est utilisé pour assurer la présence de l'utilisateur dans l'espace numérique. Dans le cadre de cette thèse nous avons étudié comment coupler la capacité de présence fournie par un tel système avec une immersion visuelle et des interactions co-localisées. Ceci a mené à la réalisation d'une application qui couple un visio-casque, un système de suivi optique et un système multi-caméra. Ainsi l'utilisateur peut visualiser son modèle 3D correctement aligné avec son corps et mixé avec les objets virtuels. Nous avons aussi mis en place une expérimentation de télépresence sur 3 sites (Bordeaux, Grenoble, Orléans) qui permet à plusieurs utilisateurs de se rencontrer en 3D et de collaborer à distance. Le modèle 3D texturé donne une très forte impression de présence de l'autre et renforce les interactions physiques grâce au langage corporel et aux expressions faciales. Enfin, nous avons étudié comment extraire une information de vitesse à partir des informations issues des caméras, grâce au flot optique et à des correspondances 2D et 3D, nous pouvons estimer le déplacement dense du modèle 3D. Cette donnée étend les capacités d'interaction en enrichissant le modèle 3D. / Online immersive and collaborative 3D environments are emerging very fast. They raise the issues of sensation of presence within virtual worlds, immersion and interaction capabilities. Multi-camera 3D systems allow to extract geometrical information (3D model) of the observed scene using the photometric information. It enables calculation of a numerical textured model in real-time, which is then used to ensure the user's presence in cyberspace. In this thesis we have studied how to pair the ability of presence, obtained from such a system, with visual immersion and co-located interactions. This led to the realization of an application that combines a head mounted display, an optical tracking system and a multi-camera system. Thus, the user can view his 3D model correctly aligned with his own body and mixed with virtual objects. We also have implemented an experimental telepresence application featuring three sites (Bordeaux, Grenoble, Orleans) that allows multiple users to meet in 3D and collaborate remotely. Textured 3D model gives a very strong sense of presence of each other and strengthens the physical interactions, thanks to body language and facial expressions. Finally, we studied how to extract 3D velocity information from the cameras images; using 2D optical flow and 2D and 3D correspondences, we can estimate the dense displacement of the 3D model. This data extend the interaction capabilities by enriching the 3D model.
3

Camera Motion Estimation for Multi-Camera Systems

Kim, Jae-Hak, Jae-Hak.Kim@anu.edu.au January 2008 (has links)
The estimation of motion of multi-camera systems is one of the most important tasks in computer vision research. Recently, some issues have been raised about general camera models and multi-camera systems. Using many cameras as a single camera is studied [60], and the epipolar geometry constraints of general camera models is theoretically derived. Methods for calibration, including a self-calibration method for general camera models, are studied [78, 62]. Multi-camera systems are an example of practically implementable general camera models and they are widely used in many applications nowadays because of both the low cost of digital charge-coupled device (CCD) cameras and the high resolution of multiple images from the wide field of views. To our knowledge, no research has been conducted on the relative motion of multi-camera systems with non-overlapping views to obtain a geometrically optimal solution. ¶ In this thesis, we solve the camera motion problem for multi-camera systems by using linear methods and convex optimization techniques, and we make five substantial and original contributions to the field of computer vision. First, we focus on the problem of translational motion of omnidirectional cameras, which are multi-camera systems, and present a constrained minimization method to obtain robust estimation results. Given known rotation, we show that bilinear and trilinear relations can be used to build a system of linear equations, and singular value decomposition (SVD) is used to solve the equations. Second, we present a linear method that estimates the relative motion of generalized cameras, in particular, in the case of non-overlapping views. We also present four types of generalized cameras, which can be solvable using our proposed, modified SVD method. This is the first study finding linear relations for certain types of generalized cameras and performing experiments using our proposed linear method. Third, we present a linear 6-point method (5 points from the same camera and 1 point from another camera) that estimates the relative motion of multi-camera systems, where cameras have no overlapping views. In addition, we discuss the theoretical and geometric analyses of multi-camera systems as well as certain critical configurations where the scale of translation cannot be determined. Fourth, we develop a global solution under an L∞ norm error for the relative motion problem of multi-camera systems using second-order cone programming. Finally, we present a fast searching method to obtain a global solution under an L∞ norm error for the relative motion problem of multi-camera systems, with non-overlapping views, using a branch-and-bound algorithm and linear programming (LP). By testing the feasibility of LP at the earlier stage, we reduced the time of computation of solving LP.¶ We tested our proposed methods by performing experiments with synthetic and real data. The Ladybug2 camera, for example, was used in the experiment on estimation of the translation of omnidirectional cameras and in the estimation of the relative motion of non-overlapping multi-camera systems. These experiments showed that a global solution using L∞ to estimate the relative motion of multi-camera systems could be achieved.
4

Approches 2D/2D pour le SFM à partir d'un réseau de caméras asynchrones / 2D/2D approaches for SFM using an asynchronous multi-camera network

Mhiri, Rawia 14 December 2015 (has links)
Les systèmes d'aide à la conduite et les travaux concernant le véhicule autonome ont atteint une certaine maturité durant ces dernières aimées grâce à l'utilisation de technologies avancées. Une étape fondamentale pour ces systèmes porte sur l'estimation du mouvement et de la structure de l'environnement (Structure From Motion) pour accomplir plusieurs tâches, notamment la détection d'obstacles et de marquage routier, la localisation et la cartographie. Pour estimer leurs mouvements, de tels systèmes utilisent des capteurs relativement chers. Pour être commercialisés à grande échelle, il est alors nécessaire de développer des applications avec des dispositifs bas coûts. Dans cette optique, les systèmes de vision se révèlent une bonne alternative. Une nouvelle méthode basée sur des approches 2D/2D à partir d'un réseau de caméras asynchrones est présentée afin d'obtenir le déplacement et la structure 3D à l'échelle absolue en prenant soin d'estimer les facteurs d'échelle. La méthode proposée, appelée méthode des triangles, se base sur l'utilisation de trois images formant un triangle : deux images provenant de la même caméra et une image provenant d'une caméra voisine. L'algorithme admet trois hypothèses: les caméras partagent des champs de vue communs (deux à deux), la trajectoire entre deux images consécutives provenant d'une même caméra est approximée par un segment linéaire et les caméras sont calibrées. La connaissance de la calibration extrinsèque entre deux caméras combinée avec l'hypothèse de mouvement rectiligne du système, permet d'estimer les facteurs d'échelle absolue. La méthode proposée est précise et robuste pour les trajectoires rectilignes et présente des résultats satisfaisants pour les virages. Pour affiner l'estimation initiale, certaines erreurs dues aux imprécisions dans l'estimation des facteurs d'échelle sont améliorées par une méthode d'optimisation : un ajustement de faisceaux local appliqué uniquement sur les facteurs d'échelle absolue et sur les points 3D. L'approche présentée est validée sur des séquences de scènes routières réelles et évaluée par rapport à la vérité terrain obtenue par un GPS différentiel. Une application fondamentale dans les domaines d'aide à la conduite et de la conduite automatisée est la détection de la route et d'obstacles. Pour un système asynchrone, une première approche pour traiter cette application est présentée en se basant sur des cartes de disparité éparses. / Driver assistance systems and autonomous vehicles have reached a certain maturity in recent years through the use of advanced technologies. A fundamental step for these systems is the motion and the structure estimation (Structure From Motion) that accomplish several tasks, including the detection of obstacles and road marking, localisation and mapping. To estimate their movements, such systems use relatively expensive sensors. In order to market such systems on a large scale, it is necessary to develop applications with low cost devices. In this context, vision systems is a good alternative. A new method based on 2D/2D approaches from an asynchronous multi-camera network is presented to obtain the motion and the 3D structure at the absolute scale, focusing on estimating the scale factors. The proposed method, called Triangle Method, is based on the use of three images forming a. triangle shape: two images from the same camera and an image from a neighboring camera. The algorithrn has three assumptions: the cameras share common fields of view (two by two), the path between two consecutive images from a single camera is approximated by a line segment, and the cameras are calibrated. The extrinsic calibration between two cameras combined with the assumption of rectilinear motion of the system allows to estimate the absolute scale factors. The proposed method is accurate and robust for straight trajectories and present satisfactory results for curve trajectories. To refine the initial estimation, some en-ors due to the inaccuracies of the scale estimation are improved by an optimization method: a local bundle adjustment applied only on the absolute scale factors and the 3D points. The presented approach is validated on sequences of real road scenes, and evaluated with respect to the ground truth obtained through a differential GPS. Finally, another fundamental application in the fields of driver assistance and automated driving is road and obstacles detection. A method is presented for an asynchronous system based on sparse disparity maps
5

Design and Calibration of a Network of RGB-D Sensors for Robotic Applications over Large Workspaces

Rizwan, Macknojia 21 March 2013 (has links)
This thesis presents an approach for configuring and calibrating a network of RGB-D sensors used to guide a robotic arm to interact with objects that get rapidly modeled in 3D. The system is based on Microsoft Kinect sensors for 3D data acquisition. The work presented here also details an analysis and experimental study of the Kinect’s depth sensor capabilities and performance. The study comprises examination of the resolution, quantization error, and random distribution of depth data. In addition, the effects of color and reflectance characteristics of an object are also analyzed. The study examines two versions of Kinect sensors, one dedicated to operate with the Xbox 360 video game console and the more recent Microsoft Kinect for Windows version. The study of the Kinect sensor is extended to the design of a rapid acquisition system dedicated to large workspaces by the linkage of multiple Kinect units to collect 3D data over a large object, such as an automotive vehicle. A customized calibration method for this large workspace is proposed which takes advantage of the rapid 3D measurement technology embedded in the Kinect sensor and provides registration accuracy between local sections of point clouds that is within the range of the depth measurements accuracy permitted by the Kinect technology. The method is developed to calibrate all Kinect units with respect to a reference Kinect. The internal calibration of the sensor in between the color and depth measurements is also performed to optimize the alignment between the modalities. The calibration of the 3D vision system is also extended to formally estimate its configuration with respect to the base of a manipulator robot, therefore allowing for seamless integration between the proposed vision platform and the kinematic control of the robot. The resulting vision-robotic system defines the comprehensive calibration of reference Kinect with the robot. The latter can then be used to interact under visual guidance with large objects, such as vehicles, that are positioned within a significantly enlarged field of view created by the network of RGB-D sensors. The proposed design and calibration method is validated in a real world scenario where five Kinect sensors operate collaboratively to rapidly and accurately reconstruct a 180 degrees coverage of the surface shape of various types of vehicles from a set of individual acquisitions performed in a semi-controlled environment, that is an underground parking garage. The vehicle geometrical properties generated from the acquired 3D data are compared with the original dimensions of the vehicle.
6

Design and Calibration of a Network of RGB-D Sensors for Robotic Applications over Large Workspaces

Macknojia, Rizwan 21 March 2013 (has links)
This thesis presents an approach for configuring and calibrating a network of RGB-D sensors used to guide a robotic arm to interact with objects that get rapidly modeled in 3D. The system is based on Microsoft Kinect sensors for 3D data acquisition. The work presented here also details an analysis and experimental study of the Kinect’s depth sensor capabilities and performance. The study comprises examination of the resolution, quantization error, and random distribution of depth data. In addition, the effects of color and reflectance characteristics of an object are also analyzed. The study examines two versions of Kinect sensors, one dedicated to operate with the Xbox 360 video game console and the more recent Microsoft Kinect for Windows version. The study of the Kinect sensor is extended to the design of a rapid acquisition system dedicated to large workspaces by the linkage of multiple Kinect units to collect 3D data over a large object, such as an automotive vehicle. A customized calibration method for this large workspace is proposed which takes advantage of the rapid 3D measurement technology embedded in the Kinect sensor and provides registration accuracy between local sections of point clouds that is within the range of the depth measurements accuracy permitted by the Kinect technology. The method is developed to calibrate all Kinect units with respect to a reference Kinect. The internal calibration of the sensor in between the color and depth measurements is also performed to optimize the alignment between the modalities. The calibration of the 3D vision system is also extended to formally estimate its configuration with respect to the base of a manipulator robot, therefore allowing for seamless integration between the proposed vision platform and the kinematic control of the robot. The resulting vision-robotic system defines the comprehensive calibration of reference Kinect with the robot. The latter can then be used to interact under visual guidance with large objects, such as vehicles, that are positioned within a significantly enlarged field of view created by the network of RGB-D sensors. The proposed design and calibration method is validated in a real world scenario where five Kinect sensors operate collaboratively to rapidly and accurately reconstruct a 180 degrees coverage of the surface shape of various types of vehicles from a set of individual acquisitions performed in a semi-controlled environment, that is an underground parking garage. The vehicle geometrical properties generated from the acquired 3D data are compared with the original dimensions of the vehicle.
7

Design and Calibration of a Network of RGB-D Sensors for Robotic Applications over Large Workspaces

Macknojia, Rizwan January 2013 (has links)
This thesis presents an approach for configuring and calibrating a network of RGB-D sensors used to guide a robotic arm to interact with objects that get rapidly modeled in 3D. The system is based on Microsoft Kinect sensors for 3D data acquisition. The work presented here also details an analysis and experimental study of the Kinect’s depth sensor capabilities and performance. The study comprises examination of the resolution, quantization error, and random distribution of depth data. In addition, the effects of color and reflectance characteristics of an object are also analyzed. The study examines two versions of Kinect sensors, one dedicated to operate with the Xbox 360 video game console and the more recent Microsoft Kinect for Windows version. The study of the Kinect sensor is extended to the design of a rapid acquisition system dedicated to large workspaces by the linkage of multiple Kinect units to collect 3D data over a large object, such as an automotive vehicle. A customized calibration method for this large workspace is proposed which takes advantage of the rapid 3D measurement technology embedded in the Kinect sensor and provides registration accuracy between local sections of point clouds that is within the range of the depth measurements accuracy permitted by the Kinect technology. The method is developed to calibrate all Kinect units with respect to a reference Kinect. The internal calibration of the sensor in between the color and depth measurements is also performed to optimize the alignment between the modalities. The calibration of the 3D vision system is also extended to formally estimate its configuration with respect to the base of a manipulator robot, therefore allowing for seamless integration between the proposed vision platform and the kinematic control of the robot. The resulting vision-robotic system defines the comprehensive calibration of reference Kinect with the robot. The latter can then be used to interact under visual guidance with large objects, such as vehicles, that are positioned within a significantly enlarged field of view created by the network of RGB-D sensors. The proposed design and calibration method is validated in a real world scenario where five Kinect sensors operate collaboratively to rapidly and accurately reconstruct a 180 degrees coverage of the surface shape of various types of vehicles from a set of individual acquisitions performed in a semi-controlled environment, that is an underground parking garage. The vehicle geometrical properties generated from the acquired 3D data are compared with the original dimensions of the vehicle.
8

ASSESSING THE POINT CLOUD QUALITY IN SINGLE-CAMERA AND MULTI-CAMERA SYSTEMS FOR CLOSE RANGE PHOTOGRAMMETRY

Alekhya Bhamidipati (17081896) 04 October 2023 (has links)
<p dir="ltr">Accurate 3D point clouds are crucial in various fields, and the advancement of software algorithms has facilitated the reconstruction of 3D models from high-quality images. Notably, both single-camera and multi-camera systems have gained popularity in obtaining these images. While single-camera setups offer simplicity and cost-effectiveness, multi-camera systems provide a broader field of view and improved coverage. However, a crucial gap persists, a lack of direct comparison and comprehensive analysis regarding the quality of point clouds acquired from each system. This thesis aims to bridge this gap by evaluating the point cloud quality obtained from both single-camera and multi-camera systems, considering various factors such as lighting conditions, camera settings, and the stability of multi-camera setup in the 3D reconstruction process. Our research also aims to provide insights into how these factors influence the quality and performance of the reconstructed point clouds. By understanding the strengths and limitations of each system, researchers and professionals can make informed decisions when selecting the most suitable 3D imaging approach for their specific applications. To achieve these objectives, we designed and utilized a custom rig with three vertically stacked cameras, each equipped with a fixed camera lens, and maintained uniform lighting conditions. Additionally, we employed a single-camera system with a zoom lens and non uniform lighting conditions. Through noise analysis, our results revealed several crucial findings. The single-camera system exhibited relatively higher noise levels, likely due to non-uniform lighting and the use of a zoom lens. In contrast, the multi-camera system demonstrated lower noise levels, which can be attributed to well-lit conditions and the use of fixed lenses. However, within the multi-camera system, instances of significant instability led to a substantial increase in noise levels in the reconstructed point cloud compared to more stable conditions. Our noise analysis showed the multi-camera system preformed better compared to the single-camera system in terms of noise quality. However, it is crucial to recognize that noise detection also revealed the influence of factors like lighting conditions, camera calibration and camera stability of multi-camera systems on the reconstruction process.</p>
9

Calibration de systèmes de caméras et projecteurs dans des applications de création multimédia

Bélanger, Lucie 12 1900 (has links)
Ce mémoire s'intéresse à la vision par ordinateur appliquée à des projets d'art technologique. Le sujet traité est la calibration de systèmes de caméras et de projecteurs dans des applications de suivi et de reconstruction 3D en arts visuels et en art performatif. Le mémoire s'articule autour de deux collaborations avec les artistes québécois Daniel Danis et Nicolas Reeves. La géométrie projective et les méthodes de calibration classiques telles que la calibration planaire et la calibration par géométrie épipolaire sont présentées pour introduire les techniques utilisées dans ces deux projets. La collaboration avec Nicolas Reeves consiste à calibrer un système caméra-projecteur sur tête robotisée pour projeter des vidéos en temps réel sur des écrans cubiques mobiles. En plus d'appliquer des méthodes de calibration classiques, nous proposons une nouvelle technique de calibration de la pose d'une caméra sur tête robotisée. Cette technique utilise des plans elliptiques générés par l'observation d'un seul point dans le monde pour déterminer la pose de la caméra par rapport au centre de rotation de la tête robotisée. Le projet avec le metteur en scène Daniel Danis aborde les techniques de calibration de systèmes multi-caméras. Pour son projet de théâtre, nous avons développé un algorithme de calibration d'un réseau de caméras wiimotes. Cette technique basée sur la géométrie épipolaire permet de faire de la reconstruction 3D d'une trajectoire dans un grand volume à un coût minime. Les résultats des techniques de calibration développées sont présentés, de même que leur utilisation dans des contextes réels de performance devant public. / This thesis focuses on computer vision applications for technological art projects. Camera and projector calibration is discussed in the context of tracking applications and 3D reconstruction in visual arts and performance art. The thesis is based on two collaborations with québécois artists Daniel Danis and Nicolas Reeves. Projective geometry and classical camera calibration techniques, such as planar calibration and calibration from epipolar geometry, are detailed to introduce the techniques implemented in both artistic projects. The project realized in collaboration with Nicolas Reeves consists of calibrating a pan-tilt camera-projector system in order to adapt videos to be projected in real time on mobile cubic screens. To fulfil the project, we used classical camera calibration techniques combined with our proposed camera pose calibration technique for pan-tilt systems. This technique uses elliptic planes, generated by the observation of a point in the scene while the camera is panning, to compute the camera pose in relation to the rotation centre of the pan-tilt system. The project developed in collaboration with Daniel Danis is based on multi-camera calibration. For this studio theatre project, we developed a multi-camera calibration algorithm to be used with a wiimote network. The technique based on epipolar geometry allows 3D reconstruction of a trajectory in a large environment at a low cost. The results obtained from the camera calibration techniques implemented are presented alongside their application in real public performance contexts.
10

Calibration de systèmes de caméras et projecteurs dans des applications de création multimédia

Bélanger, Lucie 12 1900 (has links)
Ce mémoire s'intéresse à la vision par ordinateur appliquée à des projets d'art technologique. Le sujet traité est la calibration de systèmes de caméras et de projecteurs dans des applications de suivi et de reconstruction 3D en arts visuels et en art performatif. Le mémoire s'articule autour de deux collaborations avec les artistes québécois Daniel Danis et Nicolas Reeves. La géométrie projective et les méthodes de calibration classiques telles que la calibration planaire et la calibration par géométrie épipolaire sont présentées pour introduire les techniques utilisées dans ces deux projets. La collaboration avec Nicolas Reeves consiste à calibrer un système caméra-projecteur sur tête robotisée pour projeter des vidéos en temps réel sur des écrans cubiques mobiles. En plus d'appliquer des méthodes de calibration classiques, nous proposons une nouvelle technique de calibration de la pose d'une caméra sur tête robotisée. Cette technique utilise des plans elliptiques générés par l'observation d'un seul point dans le monde pour déterminer la pose de la caméra par rapport au centre de rotation de la tête robotisée. Le projet avec le metteur en scène Daniel Danis aborde les techniques de calibration de systèmes multi-caméras. Pour son projet de théâtre, nous avons développé un algorithme de calibration d'un réseau de caméras wiimotes. Cette technique basée sur la géométrie épipolaire permet de faire de la reconstruction 3D d'une trajectoire dans un grand volume à un coût minime. Les résultats des techniques de calibration développées sont présentés, de même que leur utilisation dans des contextes réels de performance devant public. / This thesis focuses on computer vision applications for technological art projects. Camera and projector calibration is discussed in the context of tracking applications and 3D reconstruction in visual arts and performance art. The thesis is based on two collaborations with québécois artists Daniel Danis and Nicolas Reeves. Projective geometry and classical camera calibration techniques, such as planar calibration and calibration from epipolar geometry, are detailed to introduce the techniques implemented in both artistic projects. The project realized in collaboration with Nicolas Reeves consists of calibrating a pan-tilt camera-projector system in order to adapt videos to be projected in real time on mobile cubic screens. To fulfil the project, we used classical camera calibration techniques combined with our proposed camera pose calibration technique for pan-tilt systems. This technique uses elliptic planes, generated by the observation of a point in the scene while the camera is panning, to compute the camera pose in relation to the rotation centre of the pan-tilt system. The project developed in collaboration with Daniel Danis is based on multi-camera calibration. For this studio theatre project, we developed a multi-camera calibration algorithm to be used with a wiimote network. The technique based on epipolar geometry allows 3D reconstruction of a trajectory in a large environment at a low cost. The results obtained from the camera calibration techniques implemented are presented alongside their application in real public performance contexts.

Page generated in 0.0668 seconds