• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 3
  • Tagged with
  • 15
  • 15
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multiple sensor fusion for detection, classification and tracking of moving objects in driving environments / Fusion multi-capteur pour la détection, classification et suivi d'objets mobiles en environnement routier

Chavez Garcia, Ricardo Omar 25 September 2014 (has links)
Les systèmes avancés d'assistance au conducteur (ADAS) aident les conducteurs à effectuer des tâches de conduite complexes et à éviter ou atténuer les situations dangereuses. Le véhicule détecte le monde extérieur au moyen de capteurs, et ensuite construit et met à jour un modèle interne de la configuration de l'environnement. La perception de véhicule consiste à établir des relations spatiales et temporelles entre le véhicule et les obstacles statiques et mobiles dans l'environnement. Cette perception se compose de deux tâches principales : la localisation et cartographie simultanées (SLAM) traite de la modélisation de pièces statiques; et la détection et le suivi d'objets en mouvement (DATMO) est responsable de la modélisation des pièces mobiles dans l'environnement. Afin de réaliser un bon raisonnement et contrôle, le système doit modéliser correctement l'environnement. La détection précise et la classification des objets en mouvement est un aspect essentiel d'un système de suivi d'objets. Classification des objets en mouvement est nécessaire pour déterminer le comportement possible des objets entourant le véhicule, et il est généralement réalisée au niveau de suivi des objets. La connaissance de la classe d'objets en mouvement au niveau de la détection peut aider à améliorer leur suivi. La plupart des solutions de perception actuels considèrent informations de classification seulement comme information additional pour la sortie final de la perception. Aussi, la gestion de l'information incomplète est une exigence importante pour les systèmes de perception. Une information incomplète peut être originaire de raisons liées à la détection, tels que les problèmes d calibrage et les dysfonctionnements des capteurs; ou des perturbations de la scène, comme des occlusions, des problèmes de météo et objet déplacement. Les principales contributions de cette thèse se concentrent sur ​​la scène DATMO. Précisément, nous pensons que l'inclusion de la classe de l'objet comme un élément clé de la représentation de l'objet et la gestion de l'incertitude de plusieurs capteurs de détections, peut améliorer les résultats de la tâche de perception. Par conséquent, nous abordons les problèmes de l'association de données, la fusion de capteurs, la classification et le suivi à différents niveaux au sein de la phase de DATMO. Même si nous nous concentrons sur un ensemble de trois capteurs principaux: radar, lidar, et la caméra, nous proposons une architecture modifiables pour inclure un autre type ou nombre de capteurs. Premièrement, nous définissons une représentation composite de l'objet pour inclure des informations de classe et de l'état d'objet deouis le début de la tâche de perception. Deuxièmement, nous proposons, mettre en œuvre, et comparons deux architectures de perception afin de résoudre le problème de DATMO selon le niveau où l'association des objets, la fusion et la classification des informations sont inclus et appliquées. Nos méthodes de fusion de données sont basées sur la théorie de l'evidence, qui est utilisé pour gérer et inclure l'incertitude de la détection du capteur et de la classification des objets. Troisièmement, nous proposons une approche d'association de données bassée en la théorie de l'evidence pour établir une relation entre deux liste des détections d'objets. Quatrièmement, nous intégrons nos approches de fusion dans le cadre d'une application véhicule en temps réel. Cette intégration a été réalisée dans un réelle démonstrateur de véhicule du projet European InteractIVe. Finalement, nous avons analysé et évalué expérimentalement les performances des méthodes proposées. Nous avons comparé notre fusion rapproche les uns contre les autres et contre une méthode state-of-the-art en utilisant des données réelles de scénarios de conduite différents. Ces comparaisons sont concentrés sur la détection, la classification et le suivi des différents objets en mouvement: piétons, vélos, voitures et camions. / Advanced driver assistance systems (ADAS) help drivers to perform complex driving tasks and to avoid or mitigate dangerous situations. The vehicle senses the external world using sensors and then builds and updates an internal model of the environment configuration. Vehicle perception consists of establishing the spatial and temporal relationships between the vehicle and the static and moving obstacles in the environment. Vehicle perception is composed of two main tasks: simultaneous localization and mapping (SLAM) deals with modelling static parts; and detection and tracking moving objects (DATMO) is responsible for modelling moving parts in the environment. In order to perform a good reasoning and control, the system has to correctly model the surrounding environment. The accurate detection and classification of moving objects is a critical aspect of a moving object tracking system. Therefore, many sensors are part of a common intelligent vehicle system. Classification of moving objects is needed to determine the possible behaviour of the objects surrounding the vehicle, and it is usually performed at tracking level. Knowledge about the class of moving objects at detection level can help improve their tracking. Most of the current perception solutions consider classification information only as aggregate information for the final perception output. Also, management of incomplete information is an important requirement for perception systems. Incomplete information can be originated from sensor-related reasons, such as calibration issues and hardware malfunctions; or from scene perturbations, like occlusions, weather issues and object shifting. It is important to manage these situations by taking them into account in the perception process. The main contributions in this dissertation focus on the DATMO stage of the perception problem. Precisely, we believe that including the object's class as a key element of the object's representation and managing the uncertainty from multiple sensors detections, we can improve the results of the perception task, i.e., a more reliable list of moving objects of interest represented by their dynamic state and appearance information. Therefore, we address the problems of sensor data association, and sensor fusion for object detection, classification, and tracking at different levels within the DATMO stage. Although we focus on a set of three main sensors: radar, lidar, and camera, we propose a modifiable architecture to include other type or number of sensors. First, we define a composite object representation to include class information as a part of the object state from early stages to the final output of the perception task. Second, we propose, implement, and compare two different perception architectures to solve the DATMO problem according to the level where object association, fusion, and classification information is included and performed. Our data fusion approaches are based on the evidential framework, which is used to manage and include the uncertainty from sensor detections and object classifications. Third, we propose an evidential data association approach to establish a relationship between two sources of evidence from object detections. We observe how the class information improves the final result of the DATMO component. Fourth, we integrate the proposed fusion approaches as a part of a real-time vehicle application. This integration has been performed in a real vehicle demonstrator from the interactIVe European project. Finally, we analysed and experimentally evaluated the performance of the proposed methods. We compared our evidential fusion approaches against each other and against a state-of-the-art method using real data from different driving scenarios. These comparisons focused on the detection, classification and tracking of different moving objects: pedestrian, bike, car and truck.
12

Analyse multi-capteurs de signaux transitoires issus de systèmes électriques

Gottin, Bertrand 03 September 2010 (has links) (PDF)
Cette thèse a pour objectif principal d'étudier et de proposer des techniques adéquates aux problématiques de détection et de localisation des sources de signaux transitoires dans un réseau de câbles de transport d'énergie. Ainsi, les méthodes proposées tiennent compte de l'ensemble des problématiques liées à la propagation des signaux dans les câbles, les aspects physiques étant pris en compte lors de la mise en place de ces méthodes. Nous proposons pour la détection, d'introduire un critère spécifique de détection de l'ensemble des transitoires du signal reçu. Ce point est très important car un enregistrement peut contenir le transitoire propagé par le trajet direct mais également des réflexions ainsi que d'autre type de transitoires. Pour l'étape d'analyse et de localisation, il est donc très important de pouvoir détecter tous les transitoires, indépendamment de leur énergie. Nous étudions, dans un premier temps, les méthodes les plus connues – la détection à partir du spectrogramme, des ondelettes et des statistiques d'ordre supérieur. Nous prouvons la robustesse de ces méthodes dans le contexte des transitoires électriques mais également leur difficulté à détecter les transitoires de faible amplitude. Nous proposons ainsi l'utilisation du concept de distribution à temps complexe qui effectue la détection des transitoires via la dérivation de la phase du signal. Nous montrons que cette technique fournit de bonnes performances de détection de l'ensemble des transitoires, grâce à l'étude de la phase instantanée qui constitue un très bon élément pertinent en raison de son invariance par rapport à l'amplitude. La phase de localisation repose sur la prise en compte de deux difficultés majeures. La première étant la complexité de propagation d'une impulsion dans un câble et la modélisation physique de cette propagation, la seconde étant la nécessité contraignante d'acquisition synchrone pour un diagnostique on-line multi-capteur. Notre contribution consiste à proposer une technique de localisation qui quantifie la déformation relative subie par les transitoires propagés, en fonction de leur durée de propagation. L'intérêt de cette technique peu coûteuse est prouvé par des tests en configuration simulée ainsi que réelle.
13

Réception multi-capteur pour un terminal radio-mobile dans un système d'accès multiple à répartion par codes. Application au mode TDD de l'UMTS.

Ros, Laurent 19 December 2001 (has links) (PDF)
Cette thèse s'inscrit dans le cadre des systèmes de radiocommunications numériques cellulaires à accès multiple à répartition par codes, CDMA, basé sur la technique d'étalement de spectre. Les ordres de grandeur sont ceux de la liaison descendante du prochain système de 3ème génération de téléphonie mobile, UMTS, dans sa version TDD. Après une description détaillée du contexte, nous dérivons les traitements linéaires optimaux "théoriques" de réception multi-capteur multi-utilisateur opérant symbole par symbole sur le mobile, pour des canaux sélectifs. Ceci à partir d'une représentation en fréquence proposée, et en insistant sur les aspects interprétations. L'application au calcul de performances pour divers modèles d'environnement de l'UMTS mesure l'apport d'une réception sur 2 ou 3 éléments pour lutter efficacement contre les phénomènes duaux d'interférence et d'évanouissement apportés par le canal, de même que le bénéfi ce de la détection conjointe "multi-utilisateur". La dernière partie, plus pragmatique, étudie les structures numériques de réalisation pour essayer de trouve les bons compromis performances/complexité. Nous comparons d'abord la structure linéaire "libre" avec une structure imposée approximant à durée finie la solution linéaire "théorique", et dégageons les caractéristiques souhaitables pour de nouvelles structures "intermédiaires" que nous proposons et étudions à la suite. Enfin nous illustrons le comportement adaptatif de ces structures en environnement "véhicule".
14

Classification supervisée d'images d'observation de la Terre à haute résolution par utilisation de méthodes markoviennes

Voisin, Aurélie 17 October 2012 (has links) (PDF)
La classification d'images de télédétection incluant des zones urbaines permet d'établir des cartes d'utilisation du sol et/ou de couverture du sol, ou de zones endommagées par des phénomènes naturels (tremblements de terre, inondations...). Les méthodes de classification développées au cours de cette thèse sont des méthodes supervisées fondées sur des modèles markoviens. Une première approche a porté sur la classification d'images d'amplitudes issues de capteurs RSO (radar à synthèse d'ouverture) à simple polarisation et mono-résolution. La méthode choisie consiste à modéliser les statistiques de chacune des classes par des modèles de mélanges finis, puis à intégrer cette modélisation dans un champ de Markov. Afin d'améliorer la classification au niveau des zones urbaines, non seulement affectées par le bruit de chatoiement, mais aussi par l'hétérogénéité des matériaux qui s'y trouvent, nous avons extrait de l'image RSO un attribut de texture qui met en valeur les zones urbaines (typiquement, variance d'Haralick). Les statistiques de cette information texturelle sont combinées à celles de l'image initiale via des copules bivariées. Par la suite, nous avons cherché à améliorer la méthode de classification par l'utilisation d'un modèle de Markov hiérarchique sur quad-arbre. Nous avons intégré, dans ce modèle, une mise à jour de l'a priori qui permet, en pratique, d'aboutir à des résultats moins sensibles bruit de chatoiement. Les données mono-résolution sont décomposées hiérarchiquement en ayant recours à des ondelettes. Le principal avantage d'un tel modèle est de pouvoir utiliser des images multi-résolution et/ou multi-capteur et de pouvoir les intégrer directement dans l'arbre. En particulier, nous avons travaillé sur des données optiques (type GeoEye) et RSO (type COSMO-SkyMed) recalées. Les statistiques à chacun des niveaux de l'arbre sont modélisées par des mélanges finis de lois normales pour les images optiques et de lois gamma généralisées pour les images RSO. Ces statistiques sont ensuite combinées via des copules multivariées et intégrées dans le modèle hiérarchique. Les méthodes ont été testées et validées sur divers jeux de données mono-/multi-résolution RSO et/ou optiques.
15

Modèles de classification hiérarchiques d'images satellitaires multi-résolutions, multi-temporelles et multi-capteurs. Application aux désastres naturels / Hierarchical joint classification models for multi-resolution, multi-temporal and multi-sensor remote sensing images. Application to natural disasters

Hedhli, Ihsen 18 March 2016 (has links)
Les moyens mis en œuvre pour surveiller la surface de la Terre, notamment les zones urbaines, en cas de catastrophes naturelles telles que les inondations ou les tremblements de terre, et pour évaluer l’impact de ces événements, jouent un rôle primordial du point de vue sociétal, économique et humain. Dans ce cadre, des méthodes de classification précises et efficaces sont des outils particulièrement importants pour aider à l’évaluation rapide et fiable des changements au sol et des dommages provoqués. Étant données l’énorme quantité et la variété des données Haute Résolution (HR) disponibles grâce aux missions satellitaires de dernière génération et de différents types, telles que Pléiades, COSMO-SkyMed ou RadarSat-2 la principale difficulté est de trouver un classifieur qui puisse prendre en compte des données multi-bande, multi-résolution, multi-date et éventuellement multi-capteur tout en gardant un temps de calcul acceptable. Les approches de classification multi-date/multi-capteur et multi-résolution sont fondées sur une modélisation statistique explicite. En fait, le modèle développé consiste en un classifieur bayésien supervisé qui combine un modèle statistique conditionnel par classe intégrant des informations pixel par pixel à la même résolution et un champ de Markov hiérarchique fusionnant l’information spatio-temporelle et multi-résolution, en se basant sur le critère des Modes Marginales a Posteriori (MPM en anglais), qui vise à affecter à chaque pixel l’étiquette optimale en maximisant récursivement la probabilité marginale a posteriori, étant donné l’ensemble des observations multi-temporelles ou multi-capteur / The capabilities to monitor the Earth's surface, notably in urban and built-up areas, for example in the framework of the protection from environmental disasters such as floods or earthquakes, play important roles in multiple social, economic, and human viewpoints. In this framework, accurate and time-efficient classification methods are important tools required to support the rapid and reliable assessment of ground changes and damages induced by a disaster, in particular when an extensive area has been affected. Given the substantial amount and variety of data available currently from last generation very-high resolution (VHR) satellite missions such as Pléiades, COSMO-SkyMed, or RadarSat-2, the main methodological difficulty is to develop classifiers that are powerful and flexible enough to utilize the benefits of multiband, multiresolution, multi-date, and possibly multi-sensor input imagery. With the proposed approaches, multi-date/multi-sensor and multi-resolution fusion are based on explicit statistical modeling. The method combines a joint statistical model of multi-sensor and multi-temporal images through hierarchical Markov random field (MRF) modeling, leading to statistical supervised classification approaches. We have developed novel hierarchical Markov random field models, based on the marginal posterior modes (MPM) criterion, that support information extraction from multi-temporal and/or multi-sensor information and allow the joint supervised classification of multiple images taken over the same area at different times, from different sensors, and/or at different spatial resolutions. The developed methods have been experimentally validated with complex optical multispectral (Pléiades), X-band SAR (COSMO-Skymed), and C-band SAR (RadarSat-2) imagery taken from the Haiti site

Page generated in 0.0449 seconds