• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 87
  • 58
  • 22
  • 8
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 596
  • 596
  • 428
  • 137
  • 110
  • 99
  • 94
  • 89
  • 76
  • 74
  • 69
  • 62
  • 60
  • 57
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Pokročilé optimalizační modely v oblasti oběhového hospodářství / Advanced optimisation model for circular economy

Pluskal, Jaroslav January 2019 (has links)
This diploma thesis deals with application optimization method in circular economy branch. The introduction is focused on explaining main features of the issue and its benefits for economy and environment. Afterwards are mentioned some obstacles, which are preventing transition from current waste management. Mathematical apparatus, which is used in practical section, is described in the thesis. Core of the thesis is mathematical optimization model, which is implemented in the GAMS software, and generator of input data is made in VBA. The model includes all of significant waste management options with respect to economic and enviromental aspect, including transport. Functionality is then demostrated on a small task. Key thesis result is application of the model on real data concerning Czech Republic. In conclusion an analysis of computation difficulty, given the scale of the task, is accomplished.
282

Operativno planiranje rekonfiguracije distributivnih mreža primenom višekriterijumske optimizacije / Operation Planning of Distribution Network Reconfiguration by the Multiobjective Optimization

Kovački Neven 08 March 2018 (has links)
<p>U ovoj doktorskoj disertaciji razvijen je novi algoritam za operativno planiranje rekonfiguracije distributivnih mreža. Cilj ovog algoritma jeste određivanje skupa konfiguracija distributivnih mreža, čijim se uzastopnim primenama optimizuje njihov rad tokom određenog vremenskog perioda. U ovoj doktorskoj disertaciji predložen je novi algoritam za rešavanje navedenog problema, a koji je zasnovan na metodi Lagranžove relaksacije.</p> / <p>This PhD thesis proposes a new algorithm for the operation planning of the<br />distribution network reconfiguration. The aim of this algorithm is to determine<br />the set of the distribution network topologies (configurations) which optimizes<br />the distribution network operations during the given time period. In order to<br />enable processing of the real-life distribution networks, this PhD thesis<br />proposes a new algorithm for the operation planing of the distribution network<br />reconfiguration which is based on the Lagrange relaxation approach.</p>
283

Nové trendy ve stochastickém programování / New Trends in Stochastic Programming

Szabados, Viktor January 2017 (has links)
Stochastic methods are present in our daily lives, especially when we need to make a decision based on uncertain events. In this thesis, we present basic approaches used in stochastic tasks. In the first chapter, we define the stochastic problem and introduce basic methods and tasks which are present in the literature. In the second chapter, we present various problems which are non-linearly dependent on the probability measure. Moreover, we introduce deterministic and non-deterministic multicriteria tasks. In the third chapter, we give an insight on the concept of stochastic dominance and we describe the methods that are used in tasks with multidimensional stochastic dominance. In the fourth chapter, we capitalize on the knowledge from chapters two and three and we try to solve the role of portfolio optimization on real data using different approaches. 1
284

Compositional Multi-objective Parameter Tuning

Husak, Oleksandr 07 July 2020 (has links)
Multi-objective decision-making is critical for everyday tasks and engineering problems. Finding the perfect trade-off to maximize all the solution's criteria requires a considerable amount of experience or the availability of a significant number of resources. This makes these decisions difficult to achieve for expensive problems such as engineering. Most of the time, to solve such expensive problems, we are limited by time, resources, and available expertise. Therefore, it is desirable to simplify or approximate the problem when possible before solving it. The state-of-the-art approach for simplification is model-based or surrogate-based optimization. These approaches use approximation models of the real problem, which are cheaper to evaluate. These models, in essence, are simplified hypotheses of cause-effect relationships, and they replace high estimates with cheap approximations. In this thesis, we investigate surrogate models as wrappers for the real problem and apply \gls{moea} to find Pareto optimal decisions. The core idea of surrogate models is the combination and stacking of several models that each describe an independent objective. When combined, these independent models describe the multi-objective space and optimize this space as a single surrogate hypothesis - the surrogate compositional model. The combination of multiple models gives the potential to approximate more complicated problems and stacking of valid surrogate hypotheses speeds-up convergence. Consequently, a better result is obtained at lower costs. We combine several possible surrogate variants and use those that pass validation. After recombination of valid single objective surrogates to a multi-objective surrogate hypothesis, several instances of \gls{moea}s provide several Pareto front approximations. The modular structure of implementation allows us to avoid a static sampling plan and use self-adaptable models in a customizable portfolio. In numerous case studies, our methodology finds comparable solutions to standard NSGA2 using considerably fewer evaluations. We recommend the present approach for parameter tuning of expensive black-box functions.:1 Introduction 1.1 Motivation 1.2 Objectives 1.3 Research questions 1.4 Results overview 2 Background 2.1 Parameter tuning 2.2 Multi-objective optimization 2.2.1 Metrics for multi-objective solution 2.2.2 Solving methods 2.3 Surrogate optimization 2.3.1 Domain-specific problem 2.3.2 Initial sampling set 2.4 Discussion 3 Related Work 3.1 Comparison criteria 3.2 Platforms and frameworks 3.3 Model-based multi-objective algorithms 3.4 Scope of work 4 Compositional Surrogate 4.1 Combinations of surrogate models 4.1.1 Compositional Surrogate Model [RQ1] 4.1.2 Surrogate model portfolio [RQ2] 4.2 Sampling plan [RQ3] 4.2.1 Surrogate Validation 4.3 Discussion 5 Implementation 5.1 Compositional surrogate 5.2 Optimization orchestrator 6 Evaluation 6.1 Experimental setup 6.1.1 Optimization problems 6.1.2 Optimization search 6.1.3 Surrogate portfolio 6.1.4 Benchmark baseline 6.2 Benchmark 1: Portfolio with compositional surrogates. Dynamic sampling plan 6.3 Benchmark 2: Inner parameters 6.3.1 TutorM parameters 6.3.2 Sampling plan size 6.4 Benchmark 3: Scalability of surrogate models 6.5 Discussion of results 7 Conclusion 8 Future Work A Appendix A.1 Benchmark results on ZDT DTLZ, WFG problems
285

Bayesian-based Multi-Objective Hyperparameter Optimization for Accurate, Fast, and Efficient Neuromorphic System Designs

Maryam Parsa (9412388) 16 December 2020 (has links)
<div>Neuromorphic systems promise a novel alternative to the standard von-Neumann architectures that are computationally expensive for analyzing big data, and are not efficient for learning and inference. This novel generation of computing aims at ``mimicking" the human brain based on deploying neural networks on event-driven hardware architectures. A key bottleneck in designing such brain-inspired architectures is the complexity of co-optimizing the algorithm’s speed and accuracy along with the hardware’s performance and energy efficiency. This complexity stems from numerous intrinsic hyperparameters in both software and hardware that need to be optimized for an optimum design.</div><div><br></div><div>In this work, we present a versatile hierarchical pseudo agent-based multi-objective hyperparameter optimization approach for automatically tuning the hyperparameters of several training algorithms (such as traditional artificial neural networks (ANN), and evolutionary-based, binary, back-propagation-based, and conversion-based techniques in spiking neural networks (SNNs)) on digital and mixed-signal neural accelerators. By utilizing the proposed hyperparameter optimization approach we achieve improved performance over the previous state-of-the-art on those training algorithms and close some of the performance gaps that exist between SNNs and standard deep learning architectures.</div><div><br></div><div>We demonstrate >2% improvement in accuracy and more than 5X reduction in the training/inference time for a back-propagation-based SNN algorithm on the dynamic vision sensor (DVS) gesture dataset. In the case of ANN-SNN conversion-based techniques, we demonstrate 30% reduction in time-steps while surpassing the accuracy of state-of-the-art networks on an image classification dataset (CIFAR10) on a simpler and shallower architecture. Further, our analysis shows that in some cases even a seemingly minor change in hyperparameters may change the accuracy of these networks by 5‑6X. From the application perspective, we show that the optimum set of hyperparameters might drastically improve the performance (52% to 71% for Pole-Balance control application). In addition, we demonstrate resiliency of different input/output encoding, training neural network, or the underlying accelerator modules in a neuromorphic system to the changes of the hyperparameters.</div>
286

Ant colony optimisation algorithms for solving multi-objective power-aware metrics for mobile ad hoc networks

Constantinou, Demetrakis 01 July 2011 (has links)
A mobile ad hoc network (MANET) is an infrastructure-less multi-hop network where each node communicates with other nodes directly or indirectly through intermediate nodes. Thus, all nodes in a MANET basically function as mobile routers participating in some routing protocol required for deciding and maintaining the routes. Since MANETs are infrastructure-less, self-organizing, rapidly deployable wireless networks, they are highly suitable for applications such as military tactical operations, search and rescue missions, disaster relief operations, and target tracking. Building such ad-hoc networks poses a significant technical challenge because of energy constraints and specifically in relation to the application of wireless network protocols. As a result of its highly dynamic and distributed nature, the routing layer within the wireless network protocol stack, presents one of the key technical challenges in MANETs. In particular, energy efficient routing may be the most important design criterion for MANETs since mobile nodes are powered by batteries with limited capacity and variable recharge frequency, according to application demand. In order to conserve power it is essential that a routing protocol be designed to guarantee data delivery even should most of the nodes be asleep and not forwarding packets to other nodes. Load distribution constitutes another important approach to the optimisation of active communication energy. Load distribution enables the maximisation of the network lifetime by facilitating the avoidance of over-utilised nodes when a route is in the process of being selected. Routing algorithms for mobile networks that attempt to optimise routes while at- tempting to retain a small message overhead and maximise the network lifetime has been put forward. However certain of these routing protocols have proved to have a negative impact on node and network lives by inadvertently over-utilising the energy resources of a small set of nodes in favour of others. The conservation of power and careful sharing of the cost of routing packets would ensure an increase in both node and network lifetimes. This thesis proposes simultaneously, by using an ant colony optimisation (ACO) approach, to optimise five power-aware metrics that do result in energy-efficient routes and also to maximise the MANET's lifetime while taking into consideration a realistic mobility model. By using ACO algorithms a set of optimal solutions - the Pareto-optimal set - is found. This thesis proposes five algorithms to solve the multi-objective problem in the routing domain. The first two algorithms, namely, the energy e±ciency for a mobile network using a multi-objective, ant colony optimisation, multi-pheromone (EEMACOMP) algorithm and the energy efficiency for a mobile network using a multi-objective, ant colony optimisation, multi-heuristic (EEMACOMH) algorithm are both adaptations of multi-objective, ant colony optimisation algorithms (MOACO) which are based on the ant colony system (ACS) algorithm. The new algorithms are constructive which means that in every iteration, every ant builds a complete solution. In order to guide the transition from one state to another, the algorithms use pheromone and heuristic information. The next two algorithms, namely, the energy efficiency for a mobile network using a multi-objective, MAX-MIN ant system optimisation, multi-pheromone (EEMMASMP) algorithm and the energy efficiency for a mobile network using a multi-objective, MAX- MIN ant system optimisation, multi-heuristic (EEMMASMH) algorithm, both solve the above multi-objective problem by using an adaptation of the MAX-MIN ant system optimisation algorithm. The last algorithm implemented, namely, the energy efficiency for a mobile network using a multi-objective, ant colony optimisation, multi-colony (EEMACOMC) algorithm uses a multiple colony ACO algorithm. From the experimental results the final conclusions may be summarised as follows:<ul><li> Ant colony, multi-objective optimisation algorithms are suitable for mobile ad hoc networks. These algorithms allow for high adaptation to frequent changes in the topology of the network. </li><li> All five algorithms yielded substantially better results than the non-dominated sorting genetic algorithm (NSGA-II) in terms of the quality of the solution. </li><li> All the results prove that the EEMACOMP outperforms the other four ACO algorithms as well as the NSGA-II algorithm in terms of the number of solutions, closeness to the true Pareto front and diversity. </li></ul> / Thesis (PhD)--University of Pretoria, 2010. / Computer Science / unrestricted
287

A Generalized Framework for Representing Complex Networks

Viplove Arora (8086250) 06 December 2019 (has links)
<div>Complex systems are often characterized by a large collection of components interacting in nontrivial ways. Self-organization among these individual components often leads to emergence of a macroscopic structure that is neither completely regular nor completely random. In order to understand what we observe at a macroscopic scale, conceptual, mathematical, and computational tools are required for modeling and analyzing these interactions. A principled approach to understand these complex systems (and the processes that give rise to them) is to formulate generative models and infer their parameters from given data that is typically stored in the form of networks (or graphs). The increasing availability of network data from a wide variety of sources, such as the Internet, online social networks, collaboration networks, biological networks, etc., has fueled the rapid development of network science. </div><div><br></div><div>A variety of generative models have been designed to synthesize networks having specific properties (such as power law degree distributions, small-worldness, etc.), but the structural richness of real-world network data calls for researchers to posit new models that are capable of keeping pace with the empirical observations about the topological properties of real networks. The mechanistic approach to modeling networks aims to identify putative mechanisms that can explain the dependence, diversity, and heterogeneity in the interactions responsible for creating the topology of an observed network. A successful mechanistic model can highlight the principles by which a network is organized and potentially uncover the mechanisms by which it grows and develops. While it is difficult to intuit appropriate mechanisms for network formation, machine learning and evolutionary algorithms can be used to automatically infer appropriate network generation mechanisms from the observed network structure.</div><div><br></div><div>Building on these philosophical foundations and a series of (not new) observations based on first principles, we extrapolate an action-based framework that creates a compact probabilistic model for synthesizing real-world networks. Our action-based perspective assumes that the generative process is composed of two main components: (1) a set of actions that expresses link formation potential using different strategies capturing the collective behavior of nodes, and (2) an algorithmic environment that provides opportunities for nodes to create links. Optimization and machine learning methods are used to learn an appropriate low-dimensional action-based representation for an observed network in the form of a row stochastic matrix, which can subsequently be used for simulating the system at various scales. We also show that in addition to being practically relevant, the proposed model is relatively exchangeable up to relabeling of the node-types. </div><div><br></div><div>Such a model can facilitate handling many of the challenges of understanding real data, including accounting for noise and missing values, and connecting theory with data by providing interpretable results. To demonstrate the practicality of the action-based model, we decided to utilize the model within domain-specific contexts. We used the model as a centralized approach for designing resilient supply chain networks while incorporating appropriate constraints, a rare feature of most network models. Similarly, a new variant of the action-based model was used for understanding the relationship between the structural organization of human brains and the cognitive ability of subjects. Finally, our analysis of the ability of state-of-the-art network models to replicate the expected topological variations in network populations highlighted the need for rethinking the way we evaluate the goodness-of-fit of new and existing network models, thus exposing significant gaps in the literature.</div>
288

Multi-objective Intent-based Path Planning for Robots for Static and Dynamic Environments

Shaikh, Meher Talat 18 June 2020 (has links)
This dissertation models human intent for a robot navigation task, managed by a human and undertaken by a robot in a dynamic, multi-objective environment. Intent is expressed by a human through a user interface and then translated into a robot trajectory that satisfies a set of human-specified objectives and constraints. For a goal-based robot navigation task in a dynamic environment, intent includes expectations about a path in terms of objectives and constraints to be met. If the planned path drifts from the human's intent as the environment changes, a new path needs to be planned. The intent framework has four elements: (a) a mathematical representation of human intent within a multi-objective optimization problem; (b) design of an interactive graphical user interface that enables a human to communicate intent to the robot and then to subsequently monitor intent execution; (c) integration and adoption of a fast online path-planning algorithms that generate solutions/trajectories conforming to the given intent; and (d) design of metric-based triggers that provide a human the opportunity to correct or adapt a planned path to keep it aligned with intent as the environment changes. Key contributions of the dissertation are: (i) design and evaluation of different user interfaces to express intent, (ii) use of two different metrics, cosine similarity and intent threshold margin, that help quantify intent, and (iii) application of the metrics in path (re)planning to detect intent mismatches for a robot navigating in a dynamic environment. A set of user studies including both controlled laboratory experiments and Amazon Mechanical Turk studies were conducted to evaluate each of these dissertation components.
289

Physics-Based Modelling and Simulation Framework for Multi-Objective Optimization of Lithium-Ion Cells in Electric Vehicle Applications

Gaonkar, Ashwin 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In the last years, lithium-ion batteries (LIBs) have become the most important energy storage system for consumer electronics, electric vehicles, and smart grids. The development of lithium-ion batteries (LIBs) based on current practice allows an energy density increase estimated at 10% per year. However, the required power for portable electronic devices is predicted to increase at a much faster rate, namely 20% per year. Similarly, the global electric vehicle battery capacity is expected to increase from around 170 GWh per year today to 1.5 TWh per year in 2030--this is an increase of 125% per year. Without a breakthrough in battery design technology, it will be difficult to keep up with the increasing energy demand. To that end, a design methodology to accelerate the LIB development is needed. This can be achieved through the integration of electro-chemical numerical simulations and machine learning algorithms. To help this cause, this study develops a design methodology and framework using Simcenter Battery Design Studio® (BDS) and Bayesian optimization for design and optimization of cylindrical cell type 18650. The materials of the cathode are Nickel-Cobalt-Aluminum (NCA)/Nickel-Manganese-Cobalt-Aluminum (NMCA), anode is graphite, and electrolyte is Lithium hexafluorophosphate (LiPF6). Bayesian optimization has emerged as a powerful gradient-free optimization methodology to solve optimization problems that involve the evaluation of expensive black-box functions. The black-box functions are simulations of the cyclic performance test in Simcenter Battery Design Studio. The physics model used for this study is based on full system model described by Fuller and Newman. It uses Butler-Volmer Equation for ion-transportation across an interface and solvent diffusion model (Ploehn Model) for Aging of Lithium-Ion Battery Cells. The BDS model considers effects of SEI, cell electrode and microstructure dimensions, and charge-discharge rates to simulate battery degradation. Two objectives are optimized: maximization of the specific energy and minimization of the capacity fade. We perform global sensitivity analysis and see that thickness and porosity of the coating of the LIB electrodes that affect the objective functions the most. As such the design variables selected for this study are thickness and porosity of the electrodes. The thickness is restricted to vary from 22microns to 240microns and the porosity varies from 0.22 to 0.54. Two case studies are carried out using the above-mentioned objective functions and parameters. In the first study, cycling tests of 18650 NCA cathode Li-ion cells are simulated. The cells are charged and discharged using a constant 0.2C rate for 500 cycles. In the second case study a cathode active material more relevant to the electric vehicle industry, Nickel-Manganese-Cobalt-Aluminum (NMCA), is used. Here, the cells are cycled for 5 different charge-discharge scenarios to replicate charge-discharge scenario that an EVs battery module experiences. The results show that the design and optimization methodology can identify cells to satisfy the design objective that extend and improve the pareto front outside the original sampling plan for several practical charge-discharge scenarios which maximize energy density and minimize capacity fade.
290

Thermocline storage for concentrated solar power : Techno-economic performance evaluation of a multi-layered single tank storage for Solar Tower Power Plant

Ferruzza, Davide January 2015 (has links)
Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher related investment costs and difficulties during the operation of the variable volume tanks. Another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost by up to 30% and maintain high efficiencies.  The Master thesis hereby presented describes the modelling and implementation of a thermocline-like multi-layered single tank storage in a STPP. The research work presents a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. As a first step the single tank is modelled by means of differential energy conservation equations. Secondly the tank geometrical design parameters and materials are taken accordingly with the applications taken into consideration. Both the steady state and dynamic models have been implemented in an existing techno-economic tool developed in KTH, in the CSP division (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme. In this case the IRR of an optimal designed power plant can be decreased by 2.1%. However, if a continuous operation is considered, the technology is not always preferred over the two tank solution, yet is a cheaper alternative with optimized power plants. As a result the obtained LCOE can be decreased by 2.4%.

Page generated in 0.0433 seconds