Spelling suggestions: "subject:"multiagent bplanning"" "subject:"multiagent deplanning""
1 |
Value methods for efficiently solving stochastic games of complete and incomplete informationMac Dermed, Liam Charles 13 January 2014 (has links)
Multi-agent reinforcement learning (MARL) poses the same planning problem as traditional reinforcement learning (RL): What actions over time should an agent take in order to maximize its rewards? MARL tackles a challenging set of problems that can be better understood by modeling them as having a relatively simple environment but with complex dynamics attributed to the presence of other agents who are also attempting to maximize their rewards. A great wealth of research has developed around specific subsets of this problem, most notably when the rewards for each agent are either the same or directly opposite each other. However, there has been relatively little progress made for the general problem. This thesis address this lack.
Our goal is to tackle the most general, least restrictive class of MARL problems. These are general-sum, non-deterministic, infinite horizon, multi-agent sequential decision problems of complete and incomplete information. Towards this goal, we engage in two complementary endeavors: the creation of tractable models and the construction of efficient algorithms to solve these models. We tackle three well known models: stochastic games, decentralized partially observable Markov decision problems, and partially observable stochastic games. We also present a new fourth model, Markov games of incomplete information, to help solve the partially observable models.
For stochastic games and decentralized partially observable Markov decision problems, we develop novel and efficient value iteration algorithms to solve for game theoretic solutions. We empirically evaluate these algorithms on a range of problems, including well known benchmarks and show that our value iteration algorithms perform better than current policy iteration algorithms. Finally, we argue that our approach is easily extendable to new models and solution concepts, thus providing a foundation for a new class of multi-agent value iteration algorithms.
|
2 |
TaxiWorld: Developing and Evaluating Solution Methods for Multi-Agent Planning DomainsJanuary 2011 (has links)
abstract: TaxiWorld is a Matlab simulation of a city with a fleet of taxis which operate within it, with the goal of transporting passengers to their destinations. The size of the city, as well as the number of available taxis and the frequency and general locations of fare appearances can all be set on a scenario-by-scenario basis. The taxis must attempt to service the fares as quickly as possible, by picking each one up and carrying it to its drop-off location. The TaxiWorld scenario is formally modeled using both Decentralized Partially-Observable Markov Decision Processes (Dec-POMDPs) and Multi-agent Markov Decision Processes (MMDPs). The purpose of developing formal models is to learn how to build and use formal Markov models, such as can be given to planners to solve for optimal policies in problem domains. However, finding optimal solutions for Dec-POMDPs is NEXP-Complete, so an empirical algorithm was also developed as an improvement to the method already in use on the simulator, and the methods were compared in identical scenarios to determine which is more effective. The empirical method is of course not optimal - rather, it attempts to simply account for some of the most important factors to achieve an acceptable level of effectiveness while still retaining a reasonable level of computational complexity for online solving. / Dissertation/Thesis / M.S. Computer Science 2011
|
3 |
Defeasible Argumentation for Cooperative Multi-Agent PlanningPajares Ferrando, Sergio 25 January 2016 (has links)
Tesis por compendio / [EN] Multi-Agent Systems (MAS), Argumentation and Automated Planning are three lines of investigations within the field of Artificial Intelligence (AI) that have been extensively studied over the last years. A MAS is a system composed of multiple intelligent agents that interact with each other and it is used to solve problems whose solution requires the presence of various functional and autonomous entities. Multi-agent systems can be used to solve problems that are difficult or impossible to resolve for an individual agent. On the other hand, Argumentation refers to the construction and subsequent exchange (iteratively) of arguments between a group of agents, with the aim of arguing for or against a particular proposal. Regarding Automated Planning, given an initial state of the world, a goal to achieve, and a set of possible actions, the goal is to build programs that can automatically calculate a plan to reach the final state from the initial state.
The main objective of this thesis is to propose a model that combines and integrates these three research lines. More specifically, we consider a MAS as a team of agents with planning and argumentation capabilities. In that sense, given a planning problem with a set of objectives, (cooperative) agents jointly construct a plan to satisfy the objectives of the problem while they defeasibly reason about the environmental conditions so as to provide a stronger guarantee of success of the plan at execution time. Therefore, the goal is to use the planning knowledge to build a plan while agents beliefs about the impact of unexpected environmental conditions is used to select the plan which is less likely to fail at execution time. Thus, the system is intended to return collaborative plans that are more robust and adapted to the circumstances of the execution environment.
In this thesis, we designed, built and evaluated a model of argumentation based on defeasible reasoning for planning cooperative multi-agent system. The designed system is independent of the domain, thus demonstrating the ability to solve problems in different application contexts. Specifically, the system has been tested in context sensitive domains such as Ambient Intelligence as well as with problems used in the International Planning Competitions. / [ES] Dentro de la Inteligencia Artificial (IA), existen tres ramas que han sido ampliamente estudiadas en los últimos años: Sistemas Multi-Agente (SMA), Argumentación y Planificación Automática. Un SMA es un sistema compuesto por múltiples agentes inteligentes que interactúan entre sí y se utilizan para resolver problemas cuya solución requiere la presencia de diversas entidades funcionales y autónomas. Los sistemas multiagente pueden ser utilizados para resolver problemas que son difíciles o imposibles de resolver para un agente individual. Por otra parte, la Argumentación consiste en la construcción y posterior intercambio (iterativamente) de argumentos entre un conjunto de agentes, con el objetivo de razonar a favor o en contra de una determinada propuesta. Con respecto a la Planificación Automática, dado un estado inicial del mundo, un objetivo a alcanzar, y un conjunto de acciones posibles, el objetivo es construir programas capaces de calcular de forma automática un plan que permita alcanzar el estado final a partir del estado inicial.
El principal objetivo de esta tesis es proponer un modelo que combine e integre las tres líneas anteriores. Más específicamente, nosotros consideramos un SMA como un equipo de agentes con capacidades de planificación y argumentación. En ese sentido, dado un problema de planificación con un conjunto de objetivos, los agentes (cooperativos) construyen conjuntamente un plan para resolver los objetivos del problema y, al mismo tiempo, razonan sobre la viabilidad de los planes, utilizando como herramienta de diálogo la Argumentación. Por tanto, el objetivo no es sólo obtener automáticamente un plan solución generado de forma colaborativa entre los agentes, sino también utilizar las creencias de los agentes sobre la información del contexto para razonar acerca de la viabilidad de los planes en su futura etapa de ejecución. De esta forma, se pretende que el sistema sea capaz de devolver planes colaborativos más robustos y adaptados a las circunstancias del entorno de ejecución.
En esta tesis se diseña, construye y evalúa un modelo de argumentación basado en razonamiento defeasible para un sistema de planificación cooperativa multiagente. El sistema diseñado es independiente del dominio, demostrando así la capacidad de resolver problemas en diferentes contextos de aplicación. Concretamente el sistema se ha evaluado en dominios sensibles al contexto como es la Inteligencia Ambiental y en problemas de las competiciones internacionales de planificación. / [CA] Dins de la intel·ligència artificial (IA), hi han tres branques que han sigut àmpliament estudiades en els últims anys: Sistemes Multi-Agent (SMA), Argumentació i Planificació Automàtica. Un SMA es un sistema compost per múltiples agents intel·ligents que interactúen entre si i s'utilitzen per a resoldre problemas la solución dels quals requereix la presència de diverses entitats funcionals i autònomes. Els sistemes multiagente poden ser utilitzats per a resoldre problemes que són difícils o impossibles de resoldre per a un agent individual. D'altra banda, l'Argumentació consistiex en la construcció i posterior intercanvi (iterativament) d'arguments entre un conjunt d'agents, amb l'objectiu de raonar a favor o en contra d'una determinada proposta. Respecte a la Planificació Automàtica, donat un estat inicial del món, un objectiu a aconseguir, i un conjunt d'accions possibles, l'objectiu és construir programes capaços de calcular de forma automàtica un pla que permeta aconseguir l'estat final a partir de l'estat inicial.
El principal objectiu d'aquesta tesi és proposar un model que combine i integre les tres línies anteriors. Més específicament, nosaltres considerem un SMA com un equip d'agents amb capacitats de planificació i argumentació. En aquest sentit, donat un problema de planificació amb un conjunt d'objectius, els agents (cooperatius) construeixen conjuntament un pla per a resoldre els objectius del problema i, al mateix temps, raonen sobre la viabilitat dels plans, utilitzant com a ferramenta de diàleg l'Argumentació. Per tant, l'objectiu no és només obtindre automàticament un pla solució generat de forma col·laborativa entre els agents, sinó també utilitzar les creences dels agents sobre la informació del context per a raonar sobre la viabilitat dels plans en la seua futura etapa d'execució. D'aquesta manera, es pretén que el sistema siga capaç de tornar plans col·laboratius més robustos i adaptats a les circumstàncies de l'entorn d'execució.
En aquesta tesi es dissenya, construeix i avalua un model d'argumentació basat en raonament defeasible per a un sistema de planificació cooperativa multiagent. El sistema dissenyat és independent del domini, demostrant així la capacitat de resoldre problemes en diferents contextos d'aplicació. Concretament el sistema s'ha avaluat en dominis sensibles al context com és la inte·ligència Ambiental i en problemes de les competicions internacionals de planificació. / Pajares Ferrando, S. (2016). Defeasible Argumentation for Cooperative Multi-Agent Planning [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/60159 / Compendio
|
4 |
Cooperative planning in multi-agent systemsTorreño Lerma, Alejandro 14 June 2016 (has links)
Tesis por compendio / [EN] Automated planning is a centralized process in which a single planning entity, or agent, synthesizes a course of action, or plan, that satisfies a desired set of goals from an initial situation. A Multi-Agent System (MAS) is a distributed system where a group of autonomous agents pursue their own goals in a reactive, proactive and social way.
Multi-Agent Planning (MAP) is a novel research field that emerges as the integration of automated planning in MAS. Agents are endowed with planning capabilities and their mission is to find a course of action that attains the goals of the MAP task. MAP generalizes the problem of automated planning in domains where several agents plan and act together by combining their knowledge, information and capabilities.
In cooperative MAP, agents are assumed to be collaborative and work together towards the joint construction of a competent plan that solves a set of common goals. There exist different methods to address this objective, which vary according to the typology and coordination needs of the MAP task to solve; that is, to which extent agents are able to make their own local plans without affecting the activities of the other agents.
The present PhD thesis focuses on the design, development and experimental evaluation of a general-purpose and domain-independent resolution framework that solves cooperative MAP tasks of different typology and complexity. More precisely, our model performs a multi-agent multi-heuristic search over a plan space. Agents make use of an embedded search engine based on forward-chaining Partial Order Planning to successively build refinement plans starting from an initial empty plan while they jointly explore a multi-agent search tree. All the reasoning processes, algorithms and coordination protocols are fully distributed among the planning agents and guarantee the preservation of the agents' private information.
The multi-agent search is guided through the alternation of two state-based heuristic functions. These heuristic estimators use the global information on the MAP task instead of the local projections of the task of each agent. The experimental evaluation shows the effectiveness of our multi-heuristic search scheme, obtaining significant results in a wide variety of cooperative MAP tasks adapted from the benchmarks of the International Planning Competition. / [ES] La planificación automática es un proceso centralizado en el que una única entidad de planificación, o agente, sintetiza un curso de acción, o plan, que satisface un conjunto deseado de objetivos a partir de una situación inicial. Un Sistema Multi-Agente (SMA) es un sistema distribuido en el que un grupo de agentes autónomos persiguen sus propias metas de forma reactiva, proactiva y social.
La Planificación Multi-Agente (PMA) es un nuevo campo de investigación que surge de la integración de planificación automática en SMA. Los agentes disponen de capacidades de planificación y su propósito consiste en generar un curso de acción que alcance los objetivos de la tarea de PMA. La PMA generaliza el problema de planificación automática en dominios en los que diversos agentes planifican y actúan conjuntamente mediante la combinación de sus conocimientos, información y capacidades.
En PMA cooperativa, se asume que los agentes son colaborativos y trabajan conjuntamente para la construcción de un plan competente que resuelva una serie de objetivos comunes. Existen distintos métodos para alcanzar este objetivo que varían de acuerdo a la tipología y las necesidades de coordinación de la tarea de PMA a resolver; esto es, hasta qué punto los agentes pueden generar sus propios planes locales sin afectar a las actividades de otros agentes.
La presente tesis doctoral se centra en el diseño, desarrollo y evaluación experimental de una herramienta independiente del dominio y de propósito general para la resolución de tareas de PMA cooperativa de distinta tipología y nivel de complejidad. Particularmente, nuestro modelo realiza una búsqueda multi-agente y multi-heurística sobre el espacio de planes. Los agentes hacen uso de un motor de búsqueda embebido basado en Planificación de Orden Parcial de encadenamiento progresivo para generar planes refinamiento de forma sucesiva mientras exploran conjuntamente el árbol de búsqueda multiagente. Todos los procesos de razonamiento, algoritmos y protocolos de coordinación están totalmente distribuidos entre los agentes y garantizan la preservación de la información privada de los agentes.
La búsqueda multi-agente se guía mediante la alternancia de dos funciones heurísticas basadas en estados. Estos estimadores heurísticos utilizan la información global de la tarea de PMA en lugar de las proyecciones locales de la tarea de cada agente. La evaluación experimental muestra la efectividad de nuestro esquema de búsqueda multi-heurístico, que obtiene resultados significativos en una amplia variedad de tareas de PMA cooperativa adaptadas a partir de los bancos de pruebas de las Competición Internacional de Planificación. / [CA] La planificació automàtica és un procés centralitzat en el que una única entitat de planificació, o agent, sintetitza un curs d'acció, o pla, que satisfau un conjunt desitjat d'objectius a partir d'una situació inicial. Un Sistema Multi-Agent (SMA) és un sistema distribuït en el que un grup d'agents autònoms persegueixen les seues pròpies metes de forma reactiva, proactiva i social.
La Planificació Multi-Agent (PMA) és un nou camp d'investigació que sorgeix de la integració de planificació automàtica en SMA. Els agents estan dotats de capacitats de planificació i el seu propòsit consisteix en generar un curs d'acció que aconseguisca els objectius de la tasca de PMA. La PMA generalitza el problema de planificació automàtica en dominis en què diversos agents planifiquen i actúen conjuntament mitjançant la combinació dels seus coneixements, informació i capacitats.
En PMA cooperativa, s'assumeix que els agents són col·laboratius i treballen conjuntament per la construcció d'un pla competent que ressolga una sèrie d'objectius comuns. Existeixen diferents mètodes per assolir aquest objectiu que varien d'acord a la tipologia i les necessitats de coordinació de la tasca de PMA a ressoldre; és a dir, fins a quin punt els agents poden generar els seus propis plans locals sense afectar a les activitats d'altres agents.
La present tesi doctoral es centra en el disseny, desenvolupament i avaluació experimental d'una ferramenta independent del domini i de propòsit general per la resolució de tasques de PMA cooperativa de diferent tipologia i nivell de complexitat. Particularment, el nostre model realitza una cerca multi-agent i multi-heuristica sobre l'espai de plans. Els agents fan ús d'un motor de cerca embegut en base a Planificació d'Ordre Parcial d'encadenament progressiu per generar plans de refinament de forma successiva mentre exploren conjuntament l'arbre de cerca multiagent. Tots els processos de raonament, algoritmes i protocols de coordinació estan totalment distribuïts entre els agents i garanteixen la preservació de la informació privada dels agents.
La cerca multi-agent es guia mitjançant l'aternança de dues funcions heurístiques basades en estats. Aquests estimadors heurístics utilitzen la informació global de la tasca de PMA en lloc de les projeccions locals de la tasca de cada agent. L'avaluació experimental mostra l'efectivitat del nostre esquema de cerca multi-heurístic, que obté resultats significatius en una ampla varietat de tasques de PMA cooperativa adaptades a partir dels bancs de proves de la Competició Internacional de Planificació. / Torreño Lerma, A. (2016). Cooperative planning in multi-agent systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/65815 / Premios Extraordinarios de tesis doctorales / Compendio
|
5 |
Non-Cooperative Games for Self-Interested Planning AgentsJordán Prunera, Jaume Magí 03 November 2017 (has links)
Multi-Agent Planning (MAP) is a topic of growing interest that deals with the problem of automated planning in domains where multiple agents plan and act together in a shared environment. In most cases, agents in MAP are cooperative (altruistic) and work together towards a collaborative solution. However, when rational self-interested agents are involved in a MAP task, the ultimate objective is to find a joint plan that accomplishes the agents' local tasks while satisfying their private interests.
Among the MAP scenarios that involve self-interested agents, non-cooperative MAP refers to problems where non-strictly competitive agents feature common and conflicting interests. In this setting, conflicts arise when self-interested agents put their plans together and the resulting combination renders some of the plans non-executable, which implies a utility loss for the affected agents. Each participant wishes to execute its plan as it was conceived, but congestion issues and conflicts among the actions of the different plans compel agents to find a coordinated stable solution.
Non-cooperative MAP tasks are tackled through non-cooperative games, which aim at finding a stable (equilibrium) joint plan that ensures the agents' plans are executable (by addressing planning conflicts) while accounting for their private interests as much as possible. Although this paradigm reflects many real-life problems, there is a lack of computational approaches to non-cooperative MAP in the literature.
This PhD thesis pursues the application of non-cooperative games to solve non-cooperative MAP tasks that feature rational self-interested agents. Each agent calculates a plan that attains its individual planning task, and subsequently, the participants try to execute their plans in a shared environment. We tackle non-cooperative MAP from a twofold perspective. On the one hand, we focus on agents' satisfaction by studying desirable properties of stable solutions, such as optimality and fairness. On the other hand, we look for a combination of MAP and game-theoretic techniques capable of efficiently computing stable joint plans while minimizing the computational complexity of this combined task. Additionally, we consider planning conflicts and congestion issues in the agents' utility functions, which results in a more realistic approach.
To the best of our knowledge, this PhD thesis opens up a new research line in non-cooperative MAP and establishes the basic principles to attain the problem of synthesizing stable joint plans for self-interested planning agents through the combination of game theory and automated planning. / La Planificación Multi-Agente (PMA) es un tema de creciente interés que trata el problema de la planificación automática en dominios donde múltiples agentes planifican y actúan en un entorno compartido. En la mayoría de casos, los agentes en PMA son cooperativos (altruistas) y trabajan juntos para obtener una solución colaborativa. Sin embargo, cuando los agentes involucrados en una tarea de PMA son racionales y auto-interesados, el objetivo último es obtener un plan conjunto que resuelva las tareas locales de los agentes y satisfaga sus intereses privados.
De entre los distintos escenarios de PMA que involucran agentes auto-interesados, la PMA no cooperativa se centra en problemas que presentan un conjunto de agentes no estrictamente competitivos con intereses comunes y conflictivos. En este contexto, pueden surgir conflictos cuando los agentes ponen en común sus planes y la combinación resultante provoca que algunos de estos planes no sean ejecutables, lo que implica una pérdida de utilidad para los agentes afectados. Cada participante desea ejecutar su plan tal como fue concebido, pero las congestiones y conflictos que pueden surgir entre las acciones de los diferentes planes fuerzan a los agentes a obtener una solución estable y coordinada.
Las tareas de PMA no cooperativa se abordan a través de juegos no cooperativos, cuyo objetivo es hallar un plan conjunto estable (equilibrio) que asegure que los planes de los agentes sean ejecutables (resolviendo los conflictos de planificación) al tiempo que los agentes satisfacen sus intereses privados en la medida de lo posible. Aunque este paradigma refleja muchos problemas de la vida real, existen pocos enfoques computacionales para PMA no cooperativa en la literatura.
Esta tesis doctoral estudia el uso de juegos no cooperativos para resolver tareas de PMA no cooperativa con agentes racionales auto-interesados. Cada agente calcula un plan para su tarea de planificación y posteriormente, los participantes intentan ejecutar sus planes en un entorno compartido. Abordamos la PMA no cooperativa desde una doble perspectiva. Por una parte, nos centramos en la satisfacción de los agentes estudiando las propiedades deseables de soluciones estables, tales como la optimalidad y la justicia. Por otra parte, buscamos una combinación de PMA y técnicas de teoría de juegos capaz de calcular planes conjuntos estables de forma eficiente al tiempo que se minimiza la complejidad computacional de esta tarea combinada. Además, consideramos los conflictos de planificación y congestiones en las funciones de utilidad de los agentes, lo que resulta en un enfoque más realista.
Bajo nuestro punto de vista, esta tesis doctoral abre una nueva línea de investigación en PMA no cooperativa y establece los principios básicos para resolver el problema de la generación de planes conjuntos estables para agentes de planificación auto-interesados mediante la combinación de teoría de juegos y planificación automática. / La Planificació Multi-Agent (PMA) és un tema de creixent interès que tracta el problema de la planificació automàtica en dominis on múltiples agents planifiquen i actuen en un entorn compartit. En la majoria de casos, els agents en PMA són cooperatius (altruistes) i treballen junts per obtenir una solució col·laborativa. No obstant això, quan els agents involucrats en una tasca de PMA són racionals i auto-interessats, l'objectiu últim és obtenir un pla conjunt que resolgui les tasques locals dels agents i satisfaci els seus interessos privats.
D'entre els diferents escenaris de PMA que involucren agents auto-interessats, la PMA no cooperativa se centra en problemes que presenten un conjunt d'agents no estrictament competitius amb interessos comuns i conflictius. En aquest context, poden sorgir conflictes quan els agents posen en comú els seus plans i la combinació resultant provoca que alguns d'aquests plans no siguin executables, el que implica una pèrdua d'utilitat per als agents afectats. Cada participant vol executar el seu pla tal com va ser concebut, però les congestions i conflictes que poden sorgir entre les accions dels diferents plans forcen els agents a obtenir una solució estable i coordinada.
Les tasques de PMA no cooperativa s'aborden a través de jocs no cooperatius, en els quals l'objectiu és trobar un pla conjunt estable (equilibri) que asseguri que els plans dels agents siguin executables (resolent els conflictes de planificació) alhora que els agents satisfan els seus interessos privats en la mesura del possible. Encara que aquest paradigma reflecteix molts problemes de la vida real, hi ha pocs enfocaments computacionals per PMA no cooperativa en la literatura.
Aquesta tesi doctoral estudia l'ús de jocs no cooperatius per resoldre tasques de PMA no cooperativa amb agents racionals auto-interessats. Cada agent calcula un pla per a la seva tasca de planificació i posteriorment, els participants intenten executar els seus plans en un entorn compartit. Abordem la PMA no cooperativa des d'una doble perspectiva. D'una banda, ens centrem en la satisfacció dels agents estudiant les propietats desitjables de solucions estables, com ara la optimalitat i la justícia. D'altra banda, busquem una combinació de PMA i tècniques de teoria de jocs capaç de calcular plans conjunts estables de forma eficient alhora que es minimitza la complexitat computacional d'aquesta tasca combinada. A més, considerem els conflictes de planificació i congestions en les funcions d'utilitat dels agents, el que resulta en un enfocament més realista.
Des del nostre punt de vista, aquesta tesi doctoral obre una nova línia d'investigació en PMA no cooperativa i estableix els principis bàsics per resoldre el problema de la generació de plans conjunts estables per a agents de planificació auto-interessats mitjançant la combinació de teoria de jocs i planificació automàtica. / Jordán Prunera, JM. (2017). Non-Cooperative Games for Self-Interested Planning Agents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90417
|
6 |
A decentralised online multi-agent planning framework for multi-agent systemsCardoso, Rafael Cau? 27 March 2018 (has links)
Submitted by PPG Ci?ncia da Computa??o (ppgcc@pucrs.br) on 2018-05-08T18:37:11Z
No. of bitstreams: 1
RAFAEL_CAU?_CARDOSO_TES.pdf: 14431785 bytes, checksum: 227194ed28a9e55c3ab1fbedebf06922 (MD5) / Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2018-05-15T19:07:36Z (GMT) No. of bitstreams: 1
RAFAEL_CAU?_CARDOSO_TES.pdf: 14431785 bytes, checksum: 227194ed28a9e55c3ab1fbedebf06922 (MD5) / Made available in DSpace on 2018-05-15T19:14:18Z (GMT). No. of bitstreams: 1
RAFAEL_CAU?_CARDOSO_TES.pdf: 14431785 bytes, checksum: 227194ed28a9e55c3ab1fbedebf06922 (MD5)
Previous issue date: 2018-03-27 / Sistemas multiagentes freq?entemente cont?m ambientes complexos e din?micos,
nos quais os planos dos agentes podem falhar a qualquer momento durante a execu??o
do sistema. Al?m disso, novos objetivos podem aparecer para os quais n?o existem
nenhum plano dispon?vel. T?cnicas de planejamento s?o bem adequadas para lidar com
esses problemas. H? uma quantidade extensa de pesquisa em planejamento centralizado
para um ?nico agente, por?m, at? ent?o planejamento multiagente n?o foi completamente
explorado na pr?tica. Plataformas multiagentes tipicamente proporcionam
diversos mecanismos para coordena??o em tempo de execu??o, frequentemente necess?rios
em planejamento online. Neste contexto, planejamento multiagente descentralizado
pode ser eficiente e eficaz, especialmente em dom?nios fracamente acoplados, al?m de
garantir algumas propriedades importantes em sistemas de agentes como privacidade
e autonomia. N?s abordamos esse problema ao apresentar uma t?cnica para planejamento
multiagente online que combina aloca??o de objetivos, planejamento individual
utilizando rede de tarefas hier?rquicas (HTN), e coordena??o em tempo de execu??o
para apoiar a realiza??o de objetivos sociais em sistemas multiagentes. Especificamente,
n?s apresentamos um framework chamado Decentralised Online Multi-Agent Planning
(DOMAP). Experimentos com tr?s dom?nios fracamente acoplados demonstram que DOMAP
supera quatro planejadores multiagente do estado da arte com respeito a tempo
de planejamento e tempo de execu??o, particularmente nos problemas mais dif?ceis. / Multi-agent systems often contain dynamic and complex environments where agents? course of action (plans) can fail at any moment during execution of the system. Furthermore, new goals can emerge for which there are no known plan available in any of the agents? plan library. Automated planning techniques are well suited to tackle both of these issues. Extensive research has been done in centralised planning for singleagents, however, so far multi-agent planning has not been fully explored in practice. Multi-agent platforms typically provide various mechanisms for runtime coordination, which are often required in online planning (i.e., planning during runtime). In this context, decentralised multi-agent planning can be efficient as well as effective, especially in loosely-coupled domains, besides also ensuring important properties in agent systems such as privacy and autonomy. We address this issue by putting forward an approach to online multi-agent planning that combines goal allocation, individual Hierarchical Task Network (HTN) planning, and coordination during runtime in order to support the achievement of social goals in multi-agent systems. In particular, we present a planning and execution framework called Decentralised Online Multi-Agent Planning (DOMAP). Experiments with three loosely-coupled planning domains show that DOMAP outperforms four other state-of-the-art multi agent planners with regards to both planning and execution time, particularly in the most difficult problems.
|
Page generated in 0.1001 seconds