• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal Investigation of Ni and Al foil when used as cryogenic insulation

Rahn, Marcus January 2022 (has links)
Controlling thermal environments today is a complex subject and even more so when thetemperatures are cryogenic. The aim of this thesis is to investigate the crycooler GryoTelGT from Sunpower Inc under di erent conditions such as with or without insulation.The materials that will be used as insulation are Ni and Al foil. The insulation willbe assembled using di erent confgurations to test the eÿciency of these when used inconjunction with the cryocooler.Multiple formations of foil were assembled ranging between 5-10 layers, using lids madefrom Ni and Al foil as well as 3D-printed PLA plastic. Tests were conducted with thecryocooler operating at di erent power levels and through use of a thermal load.This thesis provides results from the tests made with di erent foil confgurations andvaried power levels on the thermal load and the CryoTel cryocooler. The thesis concludesthat Ni and Al foil has a minor but consistent e ect on the temperature of the cold tipin this setting and that the largest contributing factor was the power level of the CryoTelcooler during operation as well as the operating temperature of the CryoTel body.
2

Computation Of Fluid Circulation In A Cryogenic Storage Tank And Heat Transfer Analysis During Jet Impingement

Mukka, Santosh Kumar 07 March 2005 (has links)
The study presents a systematic single and two-phase analysis of fluid flow and heat transfer in a liquid hydrogen storage vessel for both earth and space applications.The study considered a cylindrical tank with elliptical top and bottom. The tank wall ismade of aluminum and a multi-layered blanket of cryogenic insulation (MLI) has been attached on the top of the aluminum. The tank is connected to a cryocooler to dissipate the heat leak through the insulation and tank wall into the fluid within the tank. The cryocooler has not been modeled; only the flow in and out of the tank to the cryocooler system has been included. The primary emphasis of this research has been the fluid circulation within the tank for different fluid distribution scenario and for different level of gravity to simulate all potential earth and space based applications. The equations solved in the liquid region included the conservation of mass, conservation of energy, and conservation of momentum. For the solid region only the heat conduction equation was solved. The steady-state velocity, temperature and pressure distributions were calculated for different inlet positions, inlet opening sizes, inlet velocities and for different gravity values. The above simulations were carried out for constant heat flux and constant wall temperature cases. It was observed from single-phase analysis that a good flow circulation can be obtained when the cold entering fluid was made to flow in radial direction and the inlet opening was placed close to the tank wall. For a two-phase analysis the mass and energy balance at the evaporating interface was taken into account by incorporating the change in specific volume and latent heat of evaporation. A good flow circulation in the liquid region was observed when the cold entering fluid was made to flow at an angle to the axis of the tank or aligned to the bottom surface of the tank. The fluid velocity in the vapor region was found to be higher compared to the liquid region. The focus of the study for the later part of the present investigation was the conjugate heat transfer during a confined liquid jet impingement on a uniform and discrete heating source. Equations governing the conservation of mass, momentum, and energy were solved in the fluid region. In the solid region, the heat conduction equation was solved. The solid-fluid interface temperature shows a strong dependence on several geometric, fluid flow, and heat transfer parameters. For uniform and discrete heat sources the Nusselt number increased with Reynolds number. For a given flow rate, a higher heat transfer coefficient was obtained with smaller slot width and lower impingement height.The average Nusselt number and average heat transfer coefficient are greater for a lower thermal conductivity substrate. A higher heat transfer coefficient at the impingement location was seen at a smaller thickness, whereas a thicker plate or a higher thermal conductivity plate material provided a more uniform distribution of heat transfer coefficient. Compared to Mil-7808 and FC-77, ammonia provided much smaller solidfluid interface temperature and higher heat transfer coefficient whereas FC-77 provided lower Nusselt number. In case of discrete heat sources calculations were done for two different physical conditions, namely, when the total input power is constant and when the magnitude of heat flux at the sources are constant. There was a periodic rise and fall of interface temperature along the heated and unheated regions of the plate when the plate thickness was negligible. The average Nusselt number and average local heat transfer coefficient were highest for uniform heating case and it increased with number of heat sources during discrete heating.

Page generated in 0.145 seconds