Spelling suggestions: "subject:"multilevel fusion"" "subject:"multielevel fusion""
1 |
Trajectory generation and data fusion for control-oriented advanced driver assistance systemsDaniel, Jérémie 01 December 2010 (has links) (PDF)
Since the origin of the automotive at the end of the 19th century, the traffic flow is subject to a constant increase and, unfortunately, involves a constant augmentation of road accidents. Research studies such as the one performed by the World Health Organization, show alarming results about the number of injuries and fatalities due to these accidents. To reduce these figures, a solution lies in the development of Advanced Driver Assistance Systems (ADAS) which purpose is to help the Driver in his driving task. This research topic has been shown to be very dynamic and productive during the last decades. Indeed, several systems such as Anti-lock Braking System (ABS), Electronic Stability Program (ESP), Adaptive Cruise Control (ACC), Parking Manoeuvre Assistant (PMA), Dynamic Bending Light (DBL), etc. are yet market available and their benefits are now recognized by most of the drivers. This first generation of ADAS are usually designed to perform a specific task in the Controller/Vehicle/Environment framework and thus requires only microscopic information, so requires sensors which are only giving local information about an element of the Vehicle or of its Environment. On the opposite, the next ADAS generation will have to consider more aspects, i.e. information and constraints about of the Vehicle and its Environment. Indeed, as they are designed to perform more complex tasks, they need a global view about the road context and the Vehicle configuration. For example, longitudinal control requires information about the road configuration (straight line, bend, etc.) and about the eventual presence of other road users (vehicles, trucks, etc.) to determine the best reference speed. [...]
|
2 |
Trajectory generation and data fusion for control-oriented advanced driver assistance systems / Génération de trajectoires et fusion de données pour des systèmes de commande d'aide à la conduite avancésDaniel, Jérémie 01 December 2010 (has links)
Depuis l'invention de l'automobile à la fin du 19eme siècle, la taille du parc ainsi que l'importance du trafic routier n'ont cessées d'augmenter. Ceci a malheureusement été suivi par l'augmentation constante du Nombre d'accidents routiers. Un grand nombre d'études et notamment un rapport fourni par l'Organisation Mondiale de la Santé, a présenté un état alarmant du nombre de blessés et de décès liés aux accidents routiers. Afin de réduire ces chiffres, une solution réside dans le Développement de systèmes d'aide à la conduite qui ont pour but d'assister le conducteur dans sa tâche de conduite. La recherche dans le domaine des aides à la conduite s'est montrée très dynamique et productive durant les vingt dernières années puisque des systèmes tels que l'antiblocage de sécurité (ABS), le programme de stabilité électronique (ESP), le régulateur de vitesse intelligent (ACC), l'assistant aux manœuvres de parking (PMA), les phares orientables (DBL), etc. sont maintenant commercialisés et acceptés par la majorité des conducteurs. Cependant, si ces systèmes ont permis d'améliorer la sécurité des conducteurs, de nombreuses pistes sont encore à explorer. En effet, les systèmes d'aide à la conduite existants ont un comportement microscopique, en d'autres termes ils se focalisent uniquement sur la tâche qu'ils ont à effectuer. Partant du principe que la collaboration entre toutes ces aides à la conduite est plus efficace que leur utilisation en parallèle, une approche globale d'aide à la conduite devient nécessaire. Ceci se traduit par la nécessité de développer une nouvelle génération d'aide à la conduite, prenant en compte d'avantage d'informations et de contraintes liées au véhicule, au conducteur et à son environnement. [...] / Since the origin of the automotive at the end of the 19th century, the traffic flow is subject to a constant increase and, unfortunately, involves a constant augmentation of road accidents. Research studies such as the one performed by the World Health Organization, show alarming results about the number of injuries and fatalities due to these accidents. To reduce these figures, a solution lies in the development of Advanced Driver Assistance Systems (ADAS) which purpose is to help the Driver in his driving task. This research topic has been shown to be very dynamic and productive during the last decades. Indeed, several systems such as Anti-lock Braking System (ABS), Electronic Stability Program (ESP), Adaptive Cruise Control (ACC), Parking Manoeuvre Assistant (PMA), Dynamic Bending Light (DBL), etc. are yet market available and their benefits are now recognized by most of the drivers. This first generation of ADAS are usually designed to perform a specific task in the Controller/Vehicle/Environment framework and thus requires only microscopic information, so requires sensors which are only giving local information about an element of the Vehicle or of its Environment. On the opposite, the next ADAS generation will have to consider more aspects, i.e. information and constraints about of the Vehicle and its Environment. Indeed, as they are designed to perform more complex tasks, they need a global view about the road context and the Vehicle configuration. For example, longitudinal control requires information about the road configuration (straight line, bend, etc.) and about the eventual presence of other road users (vehicles, trucks, etc.) to determine the best reference speed. [...]
|
Page generated in 0.0793 seconds