• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 44
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A Numerical Model for Oil/water Separation from an Accelerating Oil-coated Solid Particle

Abbas-Pour, Nima 20 November 2013 (has links)
A computational fluid dynamics model has been developed to examine the separation of an oil film from a spherical oil-coated particle falling through quiescent water due to gravity. Using this model, the separation process was studied as a function of the viscosity ratio of oil to water, R, and the ratio of viscous forces to surface tension, represented by the Capillary number Ca. The governing equations of this flow-induced motion are derived in a non-inertial spherical coordinate system, and discretized using a finite volume approach. The Volume-of-Fluid method is used to capture the oil/water interface. The model predicts two mechanisms for oil separation: at R less than 1, the shear difference between the particle/oil interface and the oil/water interface is not significant and Ca determines whether separation occurs or not; at R larger than 1, the shear difference is considerable, and the Ca effect becomes less dominant.
32

Étude expérimentale et modélisation des pertes de pression lors du renoyage d’un lit de débris / Experimental study and modelling of pressure losses during reflooding of a debris beds

Clavier, Rémi 06 November 2015 (has links)
Ce travail de thèse porte sur l’étude des pertes de pression pour des écoulements monophasiques et diphasiques inertiels au travers de milieux poreux. Son objectif est d’aider à la compréhension et à la modélisation des transferts de quantité de mouvement à l’intérieur de lits de particules, en lien avec la problématique de la gestion d’un accident grave dans un réacteur nucléaire. En effet, lors d’un tel accident, la dégradation du coeur du réacteur peut amener celui-ci à s’effondrer pour former un lit de débris, que l’on peut assimiler à un milieu poreux à haute température et dégageant de la chaleur. Ce travail de thèse s’inscrit dans un projet de recherche en sûreté nucléaire visant à prédire la refroidissabilité d’un lit de débris par injection d’eau, ou « renoyage ». Une étude expérimentale des pertes de pression pour des écoulements monodimensionnels monophasiques et diphasiques à froid est proposée dans des situations représentatives du cas réacteur, en termes de granulométrie, de formes de particules et de vitesses d’écoulement. Les expériences réalisées apportent un complément important aux données existantes, en permettant notamment d’explorer les domaines d’écoulements diphasiques avec nombres de Reynolds liquides non nuls, tout en mesurant le taux de vide, ce qui est essentiel pour une modélisation. Des modèles prédictifs pour les pertes de pression à l’intérieur d’écoulements monophasiques et diphasiques au travers de lits de particules sont établis à partir des structures d’équations obtenues par une prise de moyenne volumique des équations de conservation locales. L’observation des écoulements monophasiques montrent que des lois de type Darcy-Forchheimer avec une correction quadratique en vitesse de filtration sont à même de prédire les pertes de pression avec une précision supérieure à 10%. Une étude numérique a montré que ce résultat est applicable pour un lit désordonné de particules peu rugueuses. L’étude des écoulements diphasiques montre qu’une structure d’équations de type Darcy-Forchheimer généralisée, incluant des termes supplémentaires pour prendre en compte les effets inertiels et les frottements interfaciaux, permet de reproduire le comportement des pertes de pression dans cette situation. Un nouveau modèle est proposé, et comparé aux données expérimentales et aux modèles utilisés dans les codes de simulation des accidents graves. / This work deals with single and two-phase flow pressure losses in porous media. The aim is to improve understanding and modeling of momentum transfer inside particle beds, in relation with nuclear safety issues concerning the reflooding of debris beds during severe nuclear accidents. Indeed, the degradation of the core during such accidents can lead to the collapse of the fuel assemblies, and to the formation of a debris bed, which can be described as a hot porous medium. This thesis is included in a nuclear safety research project on coolability of debris beds during reflooding sequences. An experimental study of single and two-phase cold-flow pressure losses in particle beds is proposed. The geometrical characteristics of the debris and the hydrodynamic conditions are representative of the real case, in terms of granulometry, particle shapes, and flow velocities. The new data constitute an important contribution. In particular, they contain pressure losses and void fraction measurements in two-phase air-water flows with non-zero liquid Reynolds numbers, which did not exist before. Predictive models for pressure losses in single and two-phase flow through particle beds have been established from experimental data. Their structures are based on macroscopic equations obtained from the volume averaging of local conservation equations. Single-phase flow pressure losses can be described by a Darcy-Forchheimer law with a quadratic correction, in terms of filtration velocity, with a better-than-10 % precision. Numerical study of single-phase flows through porous media shows that this correlation is valid for disordered smooth particle beds. Twophase flow pressure losses are described using a generalized Darcy-Forchheimer structure, involving inertial and cross flow terms. A new model is proposed and compared to the experimental data and to the usual models used in severe accident simulation codes.
33

TWO-DIMENSIONAL HYDRODYNAMIC MODELING OF TWO-PHASE FLOW FOR UNDERSTANDING GEYSER PHENOMENA IN URBAN STORMWATER SYSTEM

Shao, Zhiyu S. 01 January 2013 (has links)
During intense rain events a stormwater system can fill rapidly and undergo a transition from open channel flow to pressurized flow. This transition can create large discrete pockets of trapped air in the system. These pockets are pressurized in the horizontal reaches of the system and then are released through vertical vents. In extreme cases, the transition and release of air pockets can create a geyser feature. The current models are inadequate for simulating mixed flows with complicated air-water interactions, such as geysers. Additionally, the simulation of air escaping in the vertical dropshaft is greatly simplified, or completely ignored, in the existing models. In this work a two-phase numerical model solving the Navier-Stokes equations is developed to investigate the key factors that form geysers. A projection method is used to solve the Navier-Stokes Equation. An advanced two-phase flow model, Volume of Fluid (VOF), is implemented in the Navier-Stokes solver to capture and advance the interface. This model has been validated with standard two-phase flow test problems that involve significant interface topology changes, air entrainment and violent free surface motion. The results demonstrate the capability of handling complicated two-phase interactions. The numerical results are compared with experimental data and theoretical solutions. The comparisons consistently show satisfactory performance of the model. The model is applied to a real stormwater system and accurately simulates the pressurization process in a horizontal channel. The two-phase model is applied to simulate air pockets rising and release motion in a vertical riser. The numerical model demonstrates the dominant factors that contribute to geyser formation, including air pocket size, pressurization of main pipe and surcharged state in the vertical riser. It captures the key dynamics of two-phase flow in the vertical riser, consistent with experimental results, suggesting that the code has an excellent potential of extending its use to practical applications.
34

Process Models for CO2 Migration and Leakage : Gas Transport, Pore-Scale Displacement and Effects of Impurities

Basirat, Farzad January 2017 (has links)
Geological Carbon Storage (GCS) is considered as one of the key techniques to reduce the rate of atmospheric emissions of CO2 and thereby to contribute to controlling the global warming. A successful application of a GCS project requires the capability of the formation to trap CO2 for a long term. In this context, processes related to CO2 trapping and also possible leakage of CO2 to the near surface environment need to be understood. The overall aim of this thesis is to understand the flow and transport of CO2 through porous media in the context of geological storage of CO2. The entire range of scales, including the pore scale, the laboratory scale, the field experiment scale and the industrial scale of CO2 injection operation are addressed, and some of the key processes investigated by means of experiments and modeling.  First, a numerical model and laboratory experimental setup were developed to investigate the CO2 gas flow, mimicking the system in the near-surface conditions in case a leak from the storage formation should occur. The system specifically addressed the coupled flow and mass transport of gaseous CO2 both in the porous domain as well as the free flow domain above it. The comparison of experiments and modelling results showed a very good agreement indicating that the model developed can be applied to evaluate monitoring and surface detection of potential CO2 leakage. Second, the field scale CO2 injection test carried out in a shallow aquifer in Maguelone, France was analyzed and modeled. The results showed that Monte Carlo simulations accounting for the heterogeneity effects of the permeability field did capture the key observations of the monitoring data, while a homogeneous model could not represent them. Third, a numerical model based on phase-field method was developed and model simulations carried out addressing the effect of wettability on CO2-brine displacement at the pore-scale. The results show that strongly water-wet reservoirs provide a better potential for the dissolution trapping, due to the increase of interface between CO2 and brine with very low contact angles. The results further showed that strong water-wet conditions also imply a strong capillary effect, which is important for residual trapping of CO2. Finally, numerical model development and model simulations were carried out to address the large scale geological storage of CO2 in the presence of impurity gases in the CO2 rich phase. The results showed that impurity gases N2 and CH4 affected the spatial distribution of the gas (the supercritical CO2 rich phase), and a larger volume of reservoir is needed in comparison to the pure CO2 injection scenario. In addition, the solubility trapping significantly increased in the presence of N2 and CH4.
35

Modelling the Effect of Suspended Bodies on Cavitation Bubbles near a Ridgid Boundary using a Boundary Integral Approach

McGregor, Peter Stanley January 2003 (has links)
Cavitation is the spontaneous vaporisation of a liquid to its gaseous state due to the local absolute pressure falling to the liquid's vapour pressure (Douglas, Gasiorek et al. 1995). Cavitation is present in a wide range of mechanical systems ranging from ship screws to journal bearing. Generally, cavitation is unavoidable and may cause considerable damage and efficiency losses to these systems. This thesis considers hydraulic systems specifically, and uses a modified Greens equation to develop a boundary integral method to simulate the effect that suspended solid bodies have on a single cavitation bubble. Because of the limitations of accurately modelling cavitation bubbles beyond touchdown, results are only presented for cases up to touchdown. The aim of the model is to draw insight into the reasons there is a measurable change in cavitation erosion rate with increasing oil-in-water emulsion percentage. This principle was extended to include the effect that ingested particulates may have on cavitation in hydraulic machinery. Two particular situations are modelled; the first consists of stationary rigid particles in varying proximity to a cavitation bubble near a rigid boundary. The second case is similar; however the suspended particle is allowed to move under the influence of the pressure differential caused by the expanding/contracting cavitation bubble. Numerous characteristics of the domain are considered, including domain pressures and fluid field motion, and individual boundary surface characteristics. The conclusion of the thesis is that solid bodies, either stationary or moving, have little effect on the cavity from an energy perspective. Regardless of size or density, all energy transferred from the cavity to the solid body is returned indicating that there is no net change. As this energy is ultimately responsible for the peak pressure experienced by the domain (and hence responsible for eroding the rigid boundary) as the cavity rebounds, it then serves that a cavity with a solid body will rebound at the same pressure as a cavity without a suspended body present. If this is coupled with the observation that the cavity centroid at touchdown is largely unaffected by the presence of a suspension, then it would appear that the bubble near a solid would rebound at a very similar position as a cavity without a solid. Consequently, the damage potential of a cavity is unaffected by a suspension. However, there is one point of contention as the profile of the re-entrant jet of the cavity is altered by the presence of a suspension. As energy is radiated away from the cavity during penetration, it is possible that the shape of the jet may alter the rate that energy is radiated away during penetration. However, this requires further research to be definitive.
36

High temperature particle deposition with gas turbine applications

Forsyth, Peter January 2017 (has links)
This thesis describes validated improvements in the modelling of micron-sized particle deposition within gas turbine engine secondary air systems. The initial aim of the research was to employ appropriate models of instantaneous turbulent flow behaviour to RANS CFD simulations, allowing the trajectory of solid particulates in the flow to be accurately predicted. Following critical assessment of turbophoretic models, the continuous random walk (CRW) model was chosen to predict instantaneous fluid fluctuating velocities. Particle flow, characterised by non-dimensional deposition velocity and particle relaxation time, was observed to match published experimental vertical pipe flow data. This was possible due to redefining the integration time step in terms of Kolmagorov and Lagrangian time scales, reducing the disparity between simulations and experimental data by an order of magnitude. As no high temperature validation data for the CRW model were available, an experimental rig was developed to conduct horizontal pipe flow experiments under engine realistic conditions. Both the experimental rig, and a new particulate concentration measurement technique, based on post test aqueous solution electrical conductivity, were qualified at ambient conditions. These new experimental data compare well to published data at non-dimensional particle relaxation times below 7. Above, a tail off in the deposition rate is observed, potentially caused by a bounce or shear removal mechanism at higher particle kinetic energy. At elevated temperatures and isothermal conditions, similar behaviour is observed to the ambient data. Under engine representative thermophoretic conditions, a negative gas to wall temperature gradient is seen to increase deposition by up to 4.8 times, the reverse decreasing deposition by a factor of up to 560 relative to the isothermal data. Numerical simulations using the CRW model under-predict isothermal deposition, though capturing relative thermophoretic effects well. By applying an anisotropic Lagrangian time scale, and cross trajectory effects of the external gravitational force, good agreement was observed, the first inclusion of the effect within the CRW model. A dynamic mesh morphing method was then developed, enabling the effect of large scale particle deposition to be included in simulations, without continual remeshing of the fluid domain. Simulation of an impingement jet array showed deposition of characteristic mounds up to 30% of the hole diameter in height. Simulation of a passage with film-cooling hole off-takes generated hole blockage of up to 40%. These cases confirmed that the use of the CRW generated deposition locations in line with scant available experimental data, but widespread airline fleet experience. Changing rates of deposition were observed with the evolution of the deposits in both cases, highlighting the importance of capturing changing passage geometry through dynamic mesh morphing. The level of deposition observed, was however, greater than expected in a real engine environment and identifies a need to further refine bounce-stick and erosion modelling to complement the improved prediction of impact location identified in this thesis.
37

Caractérisation polyphasique de la zone de transition dans un réservoir pétrolier carbonaté. / Multiphasic characterization of the transition zone of a carbonated petroleum reservoir.

Nono nguendjio, Franck Laurel 30 April 2014 (has links)
Dans cette thèse, nous nous sommes intéressés à la mesure et à la modélisation des propriétés d'écoulements diphasiques (perméabilités relatives) dans des milieux poreux carbonatés représentatifs de la zone de transition de réservoirs pétroliers carbonatés. Notre étude expérimentale a porté sur deux roches carbonatées de même minéralogie mais de propriétés pétrophysiques différentes (unimodale et bimodale). Les fluides utilisés sont une saumure, une huile minérale pour les expériences en mouillabilité franche à l'eau et une huile brute pour les expériences en mouillabilité altérée (obtenue par macération). Durant les expériences en « écoulements permanents », la perte de charge est mesurée continûment et le champ de saturation locale est mesuré en fin d'expérience par atténuation gamma. Les principaux résultats expérimentaux de cette étude sont les suivantes :- La mouillabilité dépend de la saturation initiale en huile et donc de la hauteur de la zone de transition. Elle a une influence sur les perméabilités relatives à l'huile ET à l'eau.- L'hystérésis des perméabilités relatives à l'eau est d'autant plus prononcée que la saturation initiale en huile augmente. Une observation similaire est faite sur la courbure des perméabilités relatives à l'huile.- Les évolutions des Sorw en fonction des Soi ne vérifient pas toutes, une loi monotone de type Land. Leur évolution dépend aussi de la structure poreuse.- Les deux types de roches carbonatés présentent une altération de mouillabilité différente, la structure vacuolaire favorisant l'altération de mouillabilité. Nos données expérimentales ont été interprétées en utilisant différents modèles d'hystérésis de la littérature. Il apparait clairement des différences entre les prédictions numériques et nos données expérimentales car ces modèles ne prennent pas en compte l'évolution de la mouillabilité. Nous avons proposé un modèle de calcul des perméabilités relatives qui décrit nos données expérimentales de manière satisfaisante. / In this work, we take an interest in measuring and modeling the multiphase flow properties (relative permeabilities) in different carbonate rock types that are representative of the transition zone of carbonate reservoirs. Our experimental study focused on two different carbonate rock types, with almost the same mineralogy, but different petrophysical properties (bimodal and unimodal). The system of fluids used is composed of brine, a mineral oil (for experiments at water-wet conditions), and a crude oil (for experiments including wettability alteration after an ageing process at high temperature). During the experiments performed by the steady-state core flooding method, the pressure drop is continuously measured along the core, and the saturation profiles are obtained at the end of the flooding, by gamma ray measurements. The main results of this study are as follows:- Wettability depends on the initial oil saturation and hence the heights above the oil-water contact. It affects the oil relative permeabilities AND water relative permeabilities- The hysteresis observed on water relative permeability is even more pronounced that the initial oil saturation increases. A similar observation is made on the curvatures of the oil relative permeability.- The evolution of Sorw as function of Soi does not always follow a classical Land correlation. Their evolution also depends on the pore structure.- The two rock types exhibit different responses to wettability alteration. The vuggy structure might promote oil-wetness.Our experimental data were interpreted using different hysteretic models of the literature. We observed significant differences between the results predicted by the models and our experimental observations which are attributed mainly to the failures to take into account the change in wettability. We proposed an improved hysteresis model, which described our experimental data satisfactorily.
38

Numerical modelling of single- and multi-phase flow and transport processes in porous media for assessing hydraulic fracturing impacts on groundwater resources

Taher Dang Koo, Reza 19 May 2020 (has links)
No description available.
39

Modelování heterogenních katalytických reakcí v reaktorech / Modelling of heterogeneous catalytic reactions in chemical reactors

Orava, Vít January 2018 (has links)
This thesis consists of two parts discussing modelling of heterogeneous catalytic reactors. In the first one, an industrial prototype of a fluidized bed reactor serving as a hydrogen generator based on endothermic decomposition of formic acid is studied. After initial determination of the main reactor characteristics a system of nine con- stituents is derived and, consequently, reduced to a three phase flow. The solid and bubble particles immersed in a liquid are modelled by the Basset-Boussinesq- Ossen equation. Furthermore, an averaging technique is used to derive a three phase Euler-Euler model. Finally, numerical computations with a verification towards the measurements and a CFD analysis are proceeded. The second part discusses interfacial transport phenomena between a bulk and catalytic surfaces of a reactor mediated via the boundary conditions. The constitu- tive relations, that by construction comply with the second law of thermodynamics, follow from the specification of suitable thermodynamic potentials together with an identification of the bulk and surface entropy productions. The derived model is suitable for further analysis providing clear guidelines for the incorporation of the Langmuir-type adsorption model as well as other sorption models. Keywords: Heterogeneous catalysis, multi-phase...
40

Stability analysis of channel flow laden with small particles.

Klinkenberg, Joy January 2011 (has links)
This thesis deals with the stability of particle laden flows. Both modal and non-modal linear analyses have been performed on two-way coupled particleladen flows, where particles are considered spherical, solid and either heavy or light. When heavy particles are considered, only Stokes drag is used as interaction term. Light particles cannot be modeled with Stokes drag alone, therefore added mass and fluid acceleration are used as additional interaction forces. The modal analysis investigates the asymptotic behavior of disturbances on a base flow, in this thesis a pressure-driven plane channel flow. A critical Reynolds number is found for particle laden flows: heavy particles increase the critical Reynolds number compared to a clean fluid, when particles are not too small or too large. Neutrally buoyant particles, on the other hand, have no influence on the critical Reynolds number. Non-modal analysis investigates the transient growth of disturbances, before the subsequent exponential behavior takes over. We investigate the kinetic energy growth of a disturbance, which can grow two to three orders of magnitude for clean fluid channel flows. This transient growth is usually the phenomenon that causes transition to turbulence: the energy can grow such that secondary instabilities and turbulence occurs. The total kinetic energy of a flow increases when particles are added to the flow as a function of the particle mass fraction. But instead of only investigating the total energy growth, the non-modal analysis is expanded such that we can differentiate between fluid and particle energy growth. When only the fluid is considered in a particle-laden flow, the transient growth is equal to the transient growth of a clean fluid. Besides thes Stokes drag, added mass and fluid acceleration, this thesis also discusses the influence of the Basset history term. This term is often neglected in stability analyses due to its arguably weak effect, but also due to difficulties in implementation. To implement the term correctly, the history of the particle has to be known. To overcome this and obtain a tractable problem, the square root in the history term is approximated by an exponential. It is found that the history force as a small effect on the transient growth. Finally, Direct numerical simulations are performed for flows with heavy particles to investigate the influence of particles on secondary instabilities. The threshold energy for two routes to turbulence is considered to investigate whether the threshold energy changes when particles are included. We show that particles influence secondary instabilities and particles may delay transition. / QC 20111013

Page generated in 0.0395 seconds