1 |
The Use of Landweber Algorithm in Image ReconstructionNikazad, Touraj January 2007 (has links)
Ill-posed sets of linear equations typically arise when discretizing certain types of integral transforms. A well known example is image reconstruction, which can be modelled using the Radon transform. After expanding the solution into a finite series of basis functions a large, sparse and ill-conditioned linear system arises. We consider the solution of such systems. In particular we study a new class of iteration methods named DROP (for Diagonal Relaxed Orthogonal Projections) constructed for solving both linear equations and linear inequalities. This class can also be viewed, when applied to linear equations, as a generalized Landweber iteration. The method is compared with other iteration methods using test data from a medical application and from electron microscopy. Our theoretical analysis include convergence proofs of the fully-simultaneous DROP algorithm for linear equations without consistency assumptions, and of block-iterative algorithms both for linear equations and linear inequalities, for the consistent case. When applying an iterative solver to an ill-posed set of linear equations the error typically initially decreases but after some iterations (depending on the amount of noise in the data, and the degree of ill-posedness) it starts to increase. This phenomena is called semi-convergence. It is therefore vital to find good stopping rules for the iteration. We describe a class of stopping rules for Landweber type iterations for solving linear inverse problems. The class includes, e.g., the well known discrepancy principle, and also the monotone error rule. We also unify the error analysis of these two methods. The stopping rules depend critically on a certain parameter whose value needs to be specified. A training procedure is therefore introduced for securing robustness. The advantages of using trained rules are demonstrated on examples taken from image reconstruction from projections. / Vi betraktar lösning av sådana linjära ekvationssystem som uppkommer vid diskretisering av inversa problem. Dessa problem karakteriseras av att den sökta informationen inte direkt kan mätas. Ett välkänt exempel utgör datortomografi. Där mäts hur mycket strålning som passerar genom ett föremål som belyses av en strålningskälla vilken intar olika vinklar i förhållande till objektet. Syftet är förstås att generera bilder av föremålets inre (i medicinska tillämpngar av det inre av kroppen). Vi studerar en klass av iterativa lösningsmetoder för lösning av ekvationssystemen. Metoderna tillämpas på testdata från bildrekonstruktion och jämförs med andra föreslagna iterationsmetoder. Vi gör även en konvergensanalys för olika val av metod-parametrar. När man använder en iterativ metod startar man med en begynnelse approximation som sedan gradvis förbättras. Emellertid är inversa problem känsliga även för relativt små fel i uppmätta data. Detta visar sig i att iterationerna först förbättras för att senare försämras. Detta fenomen, s.k. ’semi-convergence’ är väl känt och förklarat. Emellertid innebär detta att det är viktigt att konstruera goda stoppregler. Om man avbryter iterationen för tidigt fås dålig upplösning och om den avbryts för sent fås en oskarp och brusig bild. I avhandligen studeras en klass av stoppregler. Dessa analyseras teoretiskt och testas på mätdata. Speciellt föreslås en inlärningsförfarande där stoppregeln presenteras med data där det korrekra värdet på stopp-indexet är känt. Dessa data används för att bestämma en viktig parameter i regeln. Sedan används regeln för nya okända data. En sådan tränad stoppregel visar sig fungera väl på testdata från bildrekonstruktionsområdet.
|
2 |
Asset pricing under asymmetric informationHäfke, Christian, Sögner, Leopold January 1999 (has links) (PDF)
This article investigates the impacts of asymmetric information within a Lucas (1978) asset pricing economy. Asymmetry enters via the assumption that one group of agents is equipped with superior information about the dividend process. The agents maximize their lifetime utility of the underlying consumption process obtained from the agents' budget constraints, where the agents have the opportunity to invest in a risk asset to transfer income from the current to future periods. Since a closed form solution for the market price cannot be derived analytically, projection methods are applied, as described in Judd (1998), to approximate the expectation integrals in the agents' Euler equation. We derive the result that the informed trader only clearly improves his situation as compared to the non-trade situation if the uninformed trader only observes his own endowment but not the endowment of the informed trader. In the case where agents observe each others' endowment trade never results in a Pareto improvement. (auhtor's abstract) / Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
3 |
The Use of Landweber Algorithm in Image ReconstructionNikazad, Touraj January 2007 (has links)
<p>Ill-posed sets of linear equations typically arise when discretizing certain types of integral transforms. A well known example is image reconstruction, which can be modelled using the Radon transform. After expanding the solution into a finite series of basis functions a large, sparse and ill-conditioned linear system arises. We consider the solution of such systems. In particular we study a new class of iteration methods named DROP (for Diagonal Relaxed Orthogonal Projections) constructed for solving both linear equations and linear inequalities. This class can also be viewed, when applied to linear equations, as a generalized Landweber iteration. The method is compared with other iteration methods using test data from a medical application and from electron microscopy. Our theoretical analysis include convergence proofs of the fully-simultaneous DROP algorithm for linear equations without consistency assumptions, and of block-iterative algorithms both for linear equations and linear inequalities, for the consistent case.</p><p>When applying an iterative solver to an ill-posed set of linear equations the error typically initially decreases but after some iterations (depending on the amount of noise in the data, and the degree of ill-posedness) it starts to increase. This phenomena is called semi-convergence. It is therefore vital to find good stopping rules for the iteration.</p><p>We describe a class of stopping rules for Landweber type iterations for solving linear inverse problems. The class includes, e.g., the well known discrepancy principle, and also the monotone error rule. We also unify the error analysis of these two methods. The stopping rules depend critically on a certain parameter whose value needs to be specified. A training procedure is therefore introduced for securing robustness. The advantages of using trained rules are demonstrated on examples taken from image reconstruction from projections.</p> / <p>Vi betraktar lösning av sådana linjära ekvationssystem som uppkommer vid diskretisering av inversa problem. Dessa problem karakteriseras av att den sökta informationen inte direkt kan mätas. Ett välkänt exempel utgör datortomografi. Där mäts hur mycket strålning som passerar genom ett föremål som belyses av en strålningskälla vilken intar olika vinklar i förhållande till objektet. Syftet är förstås att generera bilder av föremålets inre (i medicinska tillämpngar av det inre av kroppen). Vi studerar en klass av iterativa lösningsmetoder för lösning av ekvationssystemen. Metoderna tillämpas på testdata från bildrekonstruktion och jämförs med andra föreslagna iterationsmetoder. Vi gör även en konvergensanalys för olika val av metod-parametrar.</p><p>När man använder en iterativ metod startar man med en begynnelse approximation som sedan gradvis förbättras. Emellertid är inversa problem känsliga även för relativt små fel i uppmätta data. Detta visar sig i att iterationerna först förbättras för att senare försämras. Detta fenomen, s.k. ’semi-convergence’ är väl känt och förklarat. Emellertid innebär detta att det är viktigt att konstruera goda stoppregler. Om man avbryter iterationen för tidigt fås dålig upplösning och om den avbryts för sent fås en oskarp och brusig bild.</p><p>I avhandligen studeras en klass av stoppregler. Dessa analyseras teoretiskt och testas på mätdata. Speciellt föreslås en inlärningsförfarande där stoppregeln presenteras med data där det korrekra värdet på stopp-indexet är känt. Dessa data används för att bestämma en viktig parameter i regeln. Sedan används regeln för nya okända data. En sådan tränad stoppregel visar sig fungera väl på testdata från bildrekonstruktionsområdet.</p>
|
4 |
Local theory of projection methods for Cauchy singular integral equations on an intervalJunghanns, P., U.Weber, 30 October 1998 (has links) (PDF)
We consider a finite section (Galerkin) and a collocation method for Cauchy singular
integral equations on the interval based on weighted Chebyshev polymoninals, where
the coefficients of the operator are piecewise continuous.
Stability conditions are derived using Banach algebra techniques, where
also the system case is mentioned. With the help of
appropriate Sobolev spaces a result on convergence rates is proved.
Computational aspects are discussed in order to develop
an effective algorithm. Numerical results, also
for a class of nonlinear singular integral equations,
are presented.
|
5 |
Projekční metoda aplikovaná na modelování proudění krve v mozkových aneuryzmatech / Projection method applied to modelling blood flow in cerebral aneurysmHrnčíř, Jakub January 2016 (has links)
This thesis is motivated by a problem of cerebral aneurysms, which are abnormal bulges on the arteries which supply blood for our brain. These aneurysms can rupture and cause death or permanent neurological deficits. To study the evolution of aneurysms and assess the risk of rupture, mathematical modelling might be used to compute otherwise unobtainable information about blood flow inside the aneurysm. For this reason it is essential to be able to model blood flow in sufficiently high resolution. A goal of this thesis was to implement standard projection method for the solution of unsteady incompressible Navier-Stokes equations using the free finite element software FEniCS to create a working code adjusted to the need of this particular application. The incremental pressure correction scheme was chosen. Various shortcomings of this method are described and a proper choice of boundary conditions and other implementation issues are discussed. A comparison of computed important hemodynamic indicator wall shear stress using new and previously used solution approach are compared. A test of the new code for parallel efficiency and performance on finer meshes for a real medical case was conducted. Powered by TCPDF (www.tcpdf.org)
|
6 |
On the vector epsilon algorithm for solving linear systems of equationsGraves-Morris, Peter R., Salam, A. 12 May 2009 (has links)
No / The four vector extrapolation methods, minimal polynomial extrapolation, reduced rank extrapolation, modified minimal polynomial extrapolation and the topological epsilon algorithm, when applied to linearly generated vector sequences are Krylov subspace methods and it is known that they are equivalent to some well-known conjugate gradient type methods. However, the vector -algorithm is an extrapolation method, older than the four extrapolation methods above, and no similar results are known for it. In this paper, a determinantal formula for the vector -algorithm is given. Then it is shown that, when applied to a linearly generated vector sequence, the algorithm is also a Krylov subspace method and for a class of matrices the method is equivalent to a preconditioned Lanczos method. A new determinantal formula for the CGS is given, and an algebraic comparison between the vector -algorithm for linear systems and CGS is also given.
|
7 |
Sur la résolution des équations intégrales singulières à noyau de Cauchy / [For solving Cauchy singular integral equations]Mennouni, Abdelaziz 27 April 2011 (has links)
L'objectif de ce travail est la résolution des équations intégrales singulières à noyau Cauchy. On y traite les équations singulières de Cauchy de première espèce par la méthode des approximations successives. On s'intéresse aussi aux équations intégrales à noyau de Cauchy de seconde espèce, en utilisant les polynômes trigonométriques et les techniques de Fourier. Dans la même perspective, on utilise les polynômes de Tchebychev de quatrième degré pour résoudre une équation intégro différentielle à noyau de Cauchy. Ensuite, on s'intéresse à une autre équation intégro-différentielle à noyau de Cauchy, en utilisant les polynômes de Legendre, ce qui a donné lieu à développer deux méthodes basées sur une suite de projections qui converge simplement vers l'identité. En outre, on exploite les méthodes de projection pour les équations intégrales avec des opérateurs intégraux bornés non compacts et on a appliqué ces méthodes à l'équation intégrale singulière à noyau de Cauchy de deuxième espèce / The purpose of this thesis is to develop and illustrate various new methods for solving many classes of Cauchy singular integral and integro-differential equations. We study the successive approximation method for solving Cauchy singular integral equations of the first kind in the general case, then we develop a collocation method based on trigonometric polynomials combined with a regularization procedure, for solving Cauchy integral equations of the second kind. In the same perspective, we use a projection method for solving operator equation with bounded noncompact operators in Hilbert spaces. We apply a collocation and projection methods for solving Cauchy integro-differential equations, using airfoil and Legendre polynomials
|
8 |
Local theory of projection methods for Cauchy singular integral equations on an intervalJunghanns, P., U.Weber 30 October 1998 (has links)
We consider a finite section (Galerkin) and a collocation method for Cauchy singular
integral equations on the interval based on weighted Chebyshev polymoninals, where
the coefficients of the operator are piecewise continuous.
Stability conditions are derived using Banach algebra techniques, where
also the system case is mentioned. With the help of
appropriate Sobolev spaces a result on convergence rates is proved.
Computational aspects are discussed in order to develop
an effective algorithm. Numerical results, also
for a class of nonlinear singular integral equations,
are presented.
|
9 |
TWO-DIMENSIONAL HYDRODYNAMIC MODELING OF TWO-PHASE FLOW FOR UNDERSTANDING GEYSER PHENOMENA IN URBAN STORMWATER SYSTEMShao, Zhiyu S. 01 January 2013 (has links)
During intense rain events a stormwater system can fill rapidly and undergo a transition from open channel flow to pressurized flow. This transition can create large discrete pockets of trapped air in the system. These pockets are pressurized in the horizontal reaches of the system and then are released through vertical vents. In extreme cases, the transition and release of air pockets can create a geyser feature.
The current models are inadequate for simulating mixed flows with complicated air-water interactions, such as geysers. Additionally, the simulation of air escaping in the vertical dropshaft is greatly simplified, or completely ignored, in the existing models.
In this work a two-phase numerical model solving the Navier-Stokes equations is developed to investigate the key factors that form geysers. A projection method is used to solve the Navier-Stokes Equation. An advanced two-phase flow model, Volume of Fluid (VOF), is implemented in the Navier-Stokes solver to capture and advance the interface.
This model has been validated with standard two-phase flow test problems that involve significant interface topology changes, air entrainment and violent free surface motion. The results demonstrate the capability of handling complicated two-phase interactions. The numerical results are compared with experimental data and theoretical solutions. The comparisons consistently show satisfactory performance of the model.
The model is applied to a real stormwater system and accurately simulates the pressurization process in a horizontal channel. The two-phase model is applied to simulate air pockets rising and release motion in a vertical riser. The numerical model demonstrates the dominant factors that contribute to geyser formation, including air pocket size, pressurization of main pipe and surcharged state in the vertical riser. It captures the key dynamics of two-phase flow in the vertical riser, consistent with experimental results, suggesting that the code has an excellent potential of extending its use to practical applications.
|
10 |
Análise e implementação de métodos implícitos e de projeção para escoamentos com superfície livre. / Analysis and implementation of implicit and projection methods for free surface flowsOishi, Cássio Machiaveli 05 August 2008 (has links)
No contexto do método MAC e baseado em esquemas de diferenças finitas, este trabalho apresenta três estudos: i) uma análise de estabilidade, ii) o desenvolvimento de técnicas implícitas e, iii) a construção de métodos de projeção para escoamentos com superfície livre. Na análise de estabilidade, o principal resultado mostra que o método de Crank-Nicolson torna-se condicionalmente estável quando aplicado para uma malha deslocada com a discretiza ção explícita das condições de contorno do tipo Dirichlet. Entretanto, o mesmo método com condições de contorno implícitas é incondicionalmente estável. Para obter métodos mais estáveis, formulações implícitas são desenvolvidas para a equação da pressão na superfície livre, derivada da condição de tensão normal. Esta estratégia resulta no acoplamento dos campos de velocidade e pressão, o que exige a introdução de novos métodos de projeção. Os métodos de projeção assim desenvolvidos resultam em novas metodologias para escoamentos com superfície livre que são apropriados para o tratamento de problemas com baixo número de Reynolds. Além disso, mostra-se que os métodos propostos podem ser aplicados para fluidos viscoelásticos. Novas estratégias são derivadas para obter métodos de projeção de segunda ordem de precisão para escoamentos com superfícies livres. Além dos resultados teóricos sobre a estabilidade de esquemas numéricos, técnicas implícitas e métodos de projeção, testes computacionais são realizados e comparados para consolidação da teoria apresentada. Os resultados numéricos são obtidos no sistema FREEFLOW. A eficiência e robustez das técnicas desenvolvidas neste trabalho são demonstradas na solução de problemas tridimensionais complexos com superfície livre e baixo número de Reynolds, incluindo os problemas do jato oscilante e do inchamento do extrudado / In the context of the MAC method and based on finite difference schemes, this work presents three studies: i) a stability analysis, ii) the development of implicit techniques, and iii) the construction of projection methods for free surface flows. In the stability analysis, the main result shows a precise stability restriction on the Crank-Nicolson method when one uses a staggered grid with Dirichlet explicit boundary conditions. However, the same method with implicit boundary conditions becomes unconditionally stable. In order to obtain more stable methods, implicit formulations are applied for the pressure equation at the free surface, which is derived from the normal stress condition. This approach results in a coupling of the velocity and pressure fields; hence new projection methods for free surface flows need to be developed. The developed projection methods result in new methodologies for low Reynolds number free surface flows. It is also shown that the proposed methods can be applied for viscoelastic fluids. New strategies are derived for obtaining second-order accurate projection methods for free surface flows. In addition to the theoretical results on the stability of numerical schemes, implicit techniques and projection methods, computational tests are carried out and the results compared to consolidate the theory. The numerical results are obtained by the FREEFLOW system. The eficiency and robustness of the techniques in this work are demonstrated by solving complex tridimensional problems involving free surface and low Reynolds numbers, including the jet buckling and the extrudate swell problems
|
Page generated in 0.0785 seconds