Spelling suggestions: "subject:"multiscale roughness"" "subject:"multiescale roughness""
1 |
Structuration multi-échelle d'alliages métalliques au moyen d'un laser FemtosecondeBizi Bandoki, Pavel 08 June 2012 (has links)
De nombreuses applications industrielles mettent en évidence l’importance des propriétés de mouillage des surfaces métalliques que ce soit directement pour les propriétés d’écoulement de fluides sur ces surfaces ou indirectement pour leur lien avec les phénomènes d’adhésion. Les travaux de Wenzel (1936) et de Cassie -Baxter (1944) ont montré que cette mouillabilité dépendait à la fois de la tension superficielle du solide mais aussi de sa topographie de surface. Ainsi la maîtrise et l’optimisation de ces propriétés nécessitent le contrôle de ces deux aspects, à l’image de la feuille de lotus dont le caractère super-hydrophobe réside à la fois en la présence d’une cire hydrophobe et d’une rugosité multi-échelle. Ces observations sont à l’origine, cette dernière décennie, du développement des techniques de gravures chimiques pour réaliser des texturations superficielles de matériaux et contrôler leur mouillabilité. Afin de surmonter certaines limitations de ces techniques et privilégier un procédé par voie sèche, nous avons envisagé de structurer la surface d’alliages métalliques de titane, d’aluminium, et de différents aciers inoxydables, au moyen d’un traitement de surface par laser femtoseconde. L’analyse topographique de la surface des matériaux (profilométrie optique, AFM, MEB) en fonction des paramètres d’irradiation du laser comme la densité de puissance laser, le nombre d’impulsions et le décalage latéral du faisceau en configuration balayage, a montré l’efficacité de ce procédé pour générer des texturations multi-échelles. Les différentes morphologies de textures peuvent être associées à des transitions de régimes dans l’interaction laser - matière (ripples, spikes, …). L’analyse chimique et structurale (DRX, XPS) des surfaces traitées a mis en évidence des modifications microstructurales dues aux effets thermiques du laser ainsi qu’une évolution de l’état chimique de la surface dont les effets sur la mouillabilité sont importants. L’hydrophobie des surfaces métalliques a été considérablement accentuée par le traitement laser. Ces résultats pourront être exploités pour différentes applications industrielles notamment comme moyen de contrôler l’état de surface des moules de plasturgie. / Many industrial applications highlight the importance of the wetting properties of metallic surfaces related to their adhesion phenomena. Wenzel’s (1936) and Cassie – Baxter’s (1944) independent works showed that the wettability depended on both the surface tension of the solid but also on its surface topography. Thus the control and optimization of these properties require control of both aspects, like the lotus leaf whose superhydrophobic character lies in the presence of a hydrophobic wax and a multi-scale roughness. These observations are at the origin of the development of chemical etching techniques to produce surface texturing of materials and control their wettability. To overcome some limitations of these techniques and focus on a dry process, we considered the surface texturing of metal alloys of titanium, aluminum, and various stainless steels, using a femtosecond laser surface treatment. The analysis of the topography of the textured surfaces using different techniques (optical profilometry, AFM, SEM) showed the effectiveness of this method for generating multi-scale texturing. The different morphologies of textures can be associated with regimes transitions in the laser - matter interaction (ripples,spikes ...). The chemical and structural analysis (XRD, XPS) of the treated surfaces revealed microstructural changes due to thermal effects of laser, and a shift in the chemical state of the surface whose effects on the wettability are important. The hydrophobicity of metallic surfaces was significantly enhanced by laser treatment. These results may be used for various industrial applications, including the control of the surface state of plastic molds.
|
Page generated in 0.0795 seconds