Spelling suggestions: "subject:"alliages métalliques"" "subject:"villiages métalliques""
1 |
Thermodynamique et comportement mécanique de matériaux multi-composants / Thermodynamics and mechanical behavior of multi-component materialsBracq, Guillaume 27 September 2018 (has links)
En rupture avec les approches classiques de métallurgie consistant à allier un ou deux éléments majoritaires avec d'autres éléments en proportions minoritaires, un nouveau concept de matériaux est né : des alliages multi-composants formant une solution solide et pour lesquels tous les composants sont fortement concentrés. Ces nouveaux alliages, appelés alliages à haute entropie, présentent des propriétés mécaniques prometteuses, telles qu'une résistance mécanique élevée combiné à une grande ductilité. Par définition, ce nouveau concept de matériau rend possible l'exploration d'un champ quasi-infini de compositions chimiques. Toutefois, la stabilité thermodynamique de ces systèmes est mal connue, limitant fortement le choix des compositions. Dans ce contexte, le premier objectif de cette étude était de déterminer le domaine d'existence de la solution solide cubique à faces centrées (cfc) pour le système Co-Cr-Fe-Mn-Ni. Pour cela, la stabilité de phase cfc a été étudiée théoriquement et expérimentalement. En utilisant l'approche Calphad (Calculation of PHAse Diagram) et une nouvelle base de données (TCHEA-1), les phases stables de 10 626 compositions ont pu être calculées, à plusieurs températures. La comparaison entre calculs et résultats expérimentaux indique que la solution solide cfc est correctement décrite par cette base de données. Ainsi, il a été montré que la phase cfc est stable sur une large gamme de composition, décrite intégralement. Il est désormais possible de choisir une composition formant une solution solide stable à haute température pour ce système. Des calculs DFT (Density Functional Theory) ont ensuite permis d'analyser l'évolution de l'enthalpie de mélange en fonction de la composition mais aussi du nombre d'éléments. Des différences notables ont pu être constatées avec les prédictions faites par la base de données TCHEA-1. De plus, ces calculs ont mis en avant l'absence d'interaction ternaire et quaternaire pour le système d'étude. Ensuite, l'influence de la composition sur le durcissement par solution solide a été étudiée, pour permettre l'optimisation des propriétés mécaniques. Ainsi, l'évolution des propriétés structurelles et mécaniques des alliages multi-composants a été étudiée expérimentalement. Vingt-cinq alliages du système Co-Cr-Fe-Mn-Ni formant une solution solide cfc ont été traités. Le paramètre de maille a été mesuré par rayons X tandis que la dureté et le module d'élasticité ont été étudiés par nano-indentation. Le rôle de chaque élément sur le comportement mécanique fut ainsi explicité. Finalement, un modèle permettant d'estimer le durcissement de solution solide pour ce système est étudié / For a long time, development of alloys was restricted to one principal element, or two, with minor elements added for performance optimization. In 2004, a new concept of materials was born: multi-component alloys forming a solid-solution and in which all components are very concentrated. These new alloys, named high entropy alloys, can combine high mechanical resistance and large ductility. By definition this new material concept should make it possible to explore an almost infinite field of chemical compositions. But in the meantime, the thermodynamic stability of these systems was poorly known and severely limits the choice of alloy compositions. In this context, the first objective of this study was to fully determine the composition range of existence of a unique fcc solid solution within the multi-component Co-Cr-Fe-Mn-Ni system. To address this problem, the phase stability was theoretically and experimentally investigated. Using the Calphad approach and a new database (TCHEA-1), the stable phases of 10 626 compositions could be calculated, at several temperatures. The comparison between calculation and experimental results indicates that the fcc solid solution is accurately described by this database. Finally, it was shown that the fcc phase is stable over a wide range of composition, which was completely described. Now, it is possible to choose a priori a composition which will form a solid solution within this system. The heat of mixing of the fcc phase were compared between density functional theory (DFT) and Calphad calculations for binaries, ternaries, quaternaries and quinary systems. Significant differences were found with the predictions made by the TCHEA-1 database. In addition, these calculations have highlighted the absence of ternary and quaternary interaction for the Co-Cr-Fe-Mn-Ni system. However, the influence of the composition on the fcc solid solution strengthening was not fully understood, which limits mechanical optimization. So, the evolution of structural and mechanical properties of multi-components alloys was experimentally investigated. Several alloys from the Co-Cr-Fe-Mn-Ni system forming a unique fcc solid solution were processed. The lattice parameter was measured by XRD while the hardness and elastic modulus were measured by nano-indentation. The role of each element on the mechanical behaviour is presented. Finally, a model to assess the solid solution strengthening for this system is studied
|
2 |
ETUDE IN SITU, PAR COMBINAISON DE TECHNIQUES D'IMAGERIE SYNCHROTRON (RADIOGRAPHIE X / TOPOGRAPHIE X), DE LA FORMATION DE LA MICROSTRUCTURE DE SOLIDIFICATION D'ALLIAGES METALLIQUESBuffet, Adeline 23 September 2008 (has links) (PDF)
Le dispositif d'imagerie X synchrotron, combinant radiographie et diffraction, développé au cours de ma thèse permet une étude in situ et en temps réel des phénomènes dynamiques complexes impliqués dans la solidification des alliages métalliques. Grace à ce dispositif, nous avons pu mettre en évidence le processus de TGZM (Temperature Gradient Zone Melting) et ses effets sur la microstructure de solidification.<br />Nous avons également pu quantifier l'évolution de la composition de l'alliage tout au long du processus de solidification. Nous avons montré comment à partir des images 2D obtenues en diffraction, il est possible – en utilisant la théorie dynamique de la diffraction - de reconstruire une représentation 3D des dendrites avant leur mûrissement. Nous avons pu observer et quantifier des phénomènes mécaniques réversibles (rotation) ou irréversibles (fléchissement) au sein de la microstructure dendritique.<br />Enfin, nous avons étudié les déformations apparues suite à la solidification de la phase eutectique.
|
3 |
Contribution à l'étude des transformations structurales dans des alliages métalliques nanostructurés par hyperdéformationSauvage, Xavier 07 October 2010 (has links) (PDF)
Depuis leur découverte et à travers une multitude de procédés de mise en forme on sait exploiter la capacité des métaux à se déformer de façon irréversible. Il est néanmoins intéressant de noter que vers la fin du vingtième siècle, un engouement tout particulier pour les déformations intenses est apparu au sein d'une partie de la communauté scientifique. C'est d'abord la production de nouveaux matériaux par les techniques de broyage de poudres. Bien entendu il s'agissait aussi de comprendre les mécanismes physiques conduisant aux systèmes hors équilibres ainsi obtenus (nanocristaux, solution solides supersaturées, amorphisation, ...). Puis, un peu plus tard, au début des années 90, les hyperdéformations d'alliages métalliques massifs ont connus un intérêt croissant, poussées par des perspectives de production de matériaux nanostructurés. Au-delà de l'intérêt purement scientifique, nombre de chercheurs y ont vu, et y voient encore, la possibilité d'obtenir à grande échelle et à moindre coût des matériaux à très haute résistance mécanique. C'est ainsi que le terme « Severe Plastic Deformation (SPD) » fut introduit. Il fait partie de ces expressions construites de façon peu rigoureuse en associant un concept parfaitement clair (plastic deformation) à un terme vague et subjectif (severe), et à ce titre il peut tout à fait être comparé au bien connu HRTEM (High Resolution Transmission Electron Microscopy). En fait, il est classiquement associé aux procédés spécifiquement développés pour la production de nanostructures grâce à des taux de déformation bien supérieur à 100% sans que les dimensions macroscopiques des pièces traitées ne soient affectées de manière significative. Ces taux de déformation sont généralement appliqués à des températures modérées où les phénomènes de restauration et de recristallisation sont restreints, l'endommagement étant quant à lui limité grâce aux fortes contraintes hydrostatiques mises en jeu. Ces procédés spécifiques, les mécanismes de nanostructuration, et plus particulièrement le cas des matériaux multiphasés et des structures hors équilibre ainsi obtenues sont passées en revue dans la première partie de ce mémoire. Le travail présenté ensuite porte sur l'étude de l'évolution des microstructures dans différents alliages métalliques hyperdéformés. Ce travail a été initié au cours de ma thèse sur deux types de nanocomposites (perlites tréfilées et composite filamentaire Cu/Nb). Ces matériaux sont produits par tréfilage intense, et les fortes déformations portent très loin de leur équilibre les microstructures, en accroissant de manière importante la proportion d'interfaces, la densité de dislocations et le niveau de contraintes internes. Une force motrice suffisante est ainsi parfois atteinte pour dissoudre les carbures (perlite tréfilée) ou amorphiser localement la structure (composite Cu/Nb). Sur la base de ce travail, et pour clarifier les mécanismes physiques particuliers opérant dans ce type de composites filamentaires, différentes études sur des matériaux modèles ou industriels ont été entreprises et sont présentées dans la seconde partie de ce mémoire. Il s'agissait d'une part pour les perlites tréfilées : (i) d'identifier le rôle des éléments d'alliages (Si, Mn et Cr) dans la décomposition de la cémentite ; (ii) d'étudier l'influence de la forme des carbures sur leur stabilité ; (iii) d'identifier les mécanismes de vieillissement responsable d'une modification notable du comportement mécanique. D'autre part, pour les nanocomposites de type Cu/X, il s'agissait d'étudier un système pour lequel le champ d'évaporation de la matrice (Cu) et du renfort (V) étaient similaires afin de s'affranchir des effets de grandissements locaux pouvant affecter les gradients de concentrations dans les volumes reconstruits issus des données de sonde atomique. La troisième partie de ce mémoire porte sur l'étude du système modèle Cu-Fe hyperdéformé par torsion sous pression intense afin d'étudier les mécanismes physiques conduisant à la formation de solutions solides hors équilibre. Nous discuterons notamment de l'influence de divers paramètres comme la température, la vitesse et le taux de déformation. Le rôle des défauts cristallins comme les dislocations ou les lacunes sera aussi abordé. Enfin, la dernière partie de ce mémoire porte sur les mécanismes de nanostructuration par déformation intense et notamment le rôle des atomes de soluté qui interagissent fortement avec les dislocations. Dans ce contexte, nous aborderons le rôle spécifique du carbone en solution solide dans des aciers hyperdéformés que nous comparerons aux mécanismes observés dans un alliage d'aluminium. Ensuite nous discuterons des différentes stratégies possibles pour obtenir un alliage multiphasé nanostructuré grâce à des procédés de déformation plastique intense en nous appuyant sur deux exemples spécifiques. D'une part un composite Cu-Cr hyperdéformé et nanostructuré dans l'état bi-phasé et d'autre part un alliage FeAuPd hyperdéformé et nanostructuré avant séparation de phase.
|
4 |
Modélisation des alliages à base de vanadium et des matériaux poreux cristallins utilisés comme membranes de séparation de gaz / Modelling study of vanadium based metal alloys and crystalline porous materials for gas separation membranesEvtimova, Jenny Borisova 25 November 2016 (has links)
Dans cette étude, nous proposons des procédures basées sur des calculs informatiques et des modèles théoriques qui peuvent être utilisés pour prévoir le comportement de certains matériaux membranaires d'intérêt pour les applications de séparation de gaz. En particulier, nous nous sommes concentrés sur: i) des alliages VNiTi de structure cubique centrée, considérés comme de nouveaux matériaux pour les membranes denses sélectives à H2 et ii) sur des matériaux poreux cristallins qui sont des systèmes attractifs pour la séparation de gaz légers tels que H2, O2, CO, CO2, CH4 et N2. Les deux groupes de matériaux sont traités en utilisant une méthodologie différente, adaptée aux besoins des recherches associées à ces matériaux.Dans le cas des membranes métalliques denses, nous nous sommes intéressés à la controverse, connue de longue date, concernant l'occupation de l'hydrogène interstitiel dans les alliages à base de vanadium. Le système V-Ni-Ti est en effet particulièrement intéressant grâce à sa perméabilité élevée pour H2 et à ses propriétés mécaniques accrues par rapport au vanadium pur. Ce travail cible la compréhension de la structure ces alliages à l'échelle atomique, de façon à les optimiser et à activer la conception et le développement de ces matériaux comme nouvelles membranes pour la séparation de H2. Notre approche, basées sur les premiers principes, donne un aperçu des sites préférentiels de l'hydrogène et évalue le rôle des solutés de substitution Ti et Ni, sur l'affinité d'absorption de l'hydrogène. La méthode basée sur la théorie de la fonctionnelle de la densité (DFT) ne nécessite aucune donnée expérimentale autre que l'information sur la structure cristalline. En outre, cette méthode n’utilise aucun paramètre empirique ou d’ajustement, contrairement à d'autres techniques de calcul. Ainsi, cette approche est une voie alternative pour explorer de nouveaux alliages métalliques utilisables comme membranes de séparation de H2. La méthodologie appliquée pourra être utilisé ensuite dans des calculs à haut débit pour cribler diverses compositions d'alliage. Les résultats reportés ici seront utilisés comme guide pour adapter la formulation des solutions solides VNiTi et préparer des membranes en alliage denses à faible coût (par rapport aux membranes à base de palladium) dans le cadre d’autres projets (e.g. Projet Européen FP7- DEMCAMER).Dans le cadre de notre étude sur les membranes cristallines microporeuses, nous démontrons comment les données sur un composant unique peuvent être utilisées pour prédire la sélectivité idéale de ces membranes envers les gaz légers. Des modèles théoriques sont ainsi proposés pour décrire les propriétés de séparation de gaz de matériaux de type zéolithiques (« zeotypes ») en fonction de leurs paramètres structuraux et des conditions de fonctionnement. Les paramètres du modèle peuvent être obtenus expérimentalement ainsi que par le calcul. Afin d’analyser le degré de validité et les limites des modèles, les sélectivités idéales de deux membranes zéolithes classiquement étudiées (NaA, CaA) et d’une membrane MOF (ZIF-8) ont été évaluées. Les résultats démontrent que les expressions théoriques peuvent être utilisées pour le criblage de séries de matériaux microporeux cristallins sous réserve que des données fiables sur l'adsorption de gaz purs soient disponibles pour ces matériaux. Cependant, étant donné que les modèles n’intègrent pas tous les paramètres (notamment liés au design des membranes) et mécanismes impliqués dans le transport de gaz à travers ces membranes, les prédictions doivent être considérées comme celles correspondant à un cas idéal. / In this study, we propose procedures based on computational calculations and theoretical models that can be used to predict the behaviour of some of the membrane materials of interest for gas separation applications. In particular, we focus on: i) body-centred cubic VNiTi alloys as novel materials for H2-selective dense membranes and ii) crystalline porous materials that are attractive media for separation of light gases such as H2, O2, CO, CO2, CH4 and N2. These two types of materials are treated using different methodologies, adapted to the needs of our research objectives associated to each material.In the case of dense metal membranes, the long-standing controversy over occupancy of interstitial hydrogen in V-based alloys is addressed. The V-Ni-Ti system is of particular interest here, exhibiting high H2 permeability and improved mechanical properties relative to pure V. This work intends to gain understanding of hydrogen-metal interactions as function of alloy composition and thereby to optimize these new materials and advance their development as novel membranes for H2 separation. We use a first-principles approach that gives insights into the sites preference of hydrogen and assesses the role of Ti and Ni substitutional solutes for the hydrogen absorption affinity. The method based on Density Functional Theory requires no experimental input except crystal structure information. Furthermore, it uses no empirical or fitting parameters in contrast to other computational techniques. Hence this approach provides an alternative way to explore new metal alloys for H2 separation membranes. The applied methodology can be used further in high-throughput calculations to screen various alloy compositions. The hereto-reported results will be used as guidance for tailoring the formulation of VNiTi solid solutions and preparation of low cost dense alloy membranes in the frame of other projects (e.g. European DEMCAMER project).Further, we explore how single-component inputs can be used to forecast the ideal selectivity towards light gases of crystalline porous materials, used for membrane preparation. Theoretical models for describing gas separation properties of zeotype materials as function of structural characteristics and operation conditions are proposed. The model parameters can be obtained as experimentally as well as computationally. To analyse the extent of validity and limitations of the models, ideal selectivities of few crystalline porous materials are evaluated, including widely used zeolites (NaA, CaA) and a metal organic framework structure (ZIF-8). The results verified that the theoretical expressions could be used for screening series of zeotype materials when reliable single gas adsorption data are available. However, since the models don’t take into account all parameters (namely related to the membrane design) and mechanisms involved in gas transport through porous membranes, their predictions should be considered as values referring to an ideal case.
|
5 |
Structuration multi-échelle d'alliages métalliques au moyen d'un laser FemtosecondeBizi Bandoki, Pavel 08 June 2012 (has links)
De nombreuses applications industrielles mettent en évidence l’importance des propriétés de mouillage des surfaces métalliques que ce soit directement pour les propriétés d’écoulement de fluides sur ces surfaces ou indirectement pour leur lien avec les phénomènes d’adhésion. Les travaux de Wenzel (1936) et de Cassie -Baxter (1944) ont montré que cette mouillabilité dépendait à la fois de la tension superficielle du solide mais aussi de sa topographie de surface. Ainsi la maîtrise et l’optimisation de ces propriétés nécessitent le contrôle de ces deux aspects, à l’image de la feuille de lotus dont le caractère super-hydrophobe réside à la fois en la présence d’une cire hydrophobe et d’une rugosité multi-échelle. Ces observations sont à l’origine, cette dernière décennie, du développement des techniques de gravures chimiques pour réaliser des texturations superficielles de matériaux et contrôler leur mouillabilité. Afin de surmonter certaines limitations de ces techniques et privilégier un procédé par voie sèche, nous avons envisagé de structurer la surface d’alliages métalliques de titane, d’aluminium, et de différents aciers inoxydables, au moyen d’un traitement de surface par laser femtoseconde. L’analyse topographique de la surface des matériaux (profilométrie optique, AFM, MEB) en fonction des paramètres d’irradiation du laser comme la densité de puissance laser, le nombre d’impulsions et le décalage latéral du faisceau en configuration balayage, a montré l’efficacité de ce procédé pour générer des texturations multi-échelles. Les différentes morphologies de textures peuvent être associées à des transitions de régimes dans l’interaction laser - matière (ripples, spikes, …). L’analyse chimique et structurale (DRX, XPS) des surfaces traitées a mis en évidence des modifications microstructurales dues aux effets thermiques du laser ainsi qu’une évolution de l’état chimique de la surface dont les effets sur la mouillabilité sont importants. L’hydrophobie des surfaces métalliques a été considérablement accentuée par le traitement laser. Ces résultats pourront être exploités pour différentes applications industrielles notamment comme moyen de contrôler l’état de surface des moules de plasturgie. / Many industrial applications highlight the importance of the wetting properties of metallic surfaces related to their adhesion phenomena. Wenzel’s (1936) and Cassie – Baxter’s (1944) independent works showed that the wettability depended on both the surface tension of the solid but also on its surface topography. Thus the control and optimization of these properties require control of both aspects, like the lotus leaf whose superhydrophobic character lies in the presence of a hydrophobic wax and a multi-scale roughness. These observations are at the origin of the development of chemical etching techniques to produce surface texturing of materials and control their wettability. To overcome some limitations of these techniques and focus on a dry process, we considered the surface texturing of metal alloys of titanium, aluminum, and various stainless steels, using a femtosecond laser surface treatment. The analysis of the topography of the textured surfaces using different techniques (optical profilometry, AFM, SEM) showed the effectiveness of this method for generating multi-scale texturing. The different morphologies of textures can be associated with regimes transitions in the laser - matter interaction (ripples,spikes ...). The chemical and structural analysis (XRD, XPS) of the treated surfaces revealed microstructural changes due to thermal effects of laser, and a shift in the chemical state of the surface whose effects on the wettability are important. The hydrophobicity of metallic surfaces was significantly enhanced by laser treatment. These results may be used for various industrial applications, including the control of the surface state of plastic molds.
|
6 |
Synthèse, caractérisation et étude des propriétés thermodynamiques d'hydrogénation de nanocomposites matériaux poreux / métaux-alliages / Synthesis, characterization and study of thermodynamic Hydrogen storage properties of Metal-Alloy nanoparticles / Porous Materials nanocompositesCampesi, Renato 13 November 2008 (has links)
Plusieurs verrous scientifiques et technologiques empêchent aujourd’hui de développer une technique et/ou un matériau qui permette de stocker une quantité importante d’hydrogène à pression et température ambiante dans un volume et un poids acceptable pour des applications embarquées. Une possible solution consiste à synthétiser des matériaux hybrides (matériaux poreux/métaux ou alliages) où les processus d’adsorption et d’absorption pourraient coopérer pour obtenir une capacité de stockage d’hydrogène en adéquation avec les besoins des applications. Notre travail a consisté à identifier et caractériser différents matériaux poreux ayant une organisation de pores bien définie et une taille de l’ordre de quelques nanomètres. Parmi eux, ont été choisis : une réplique de carbone (CT) et un réseau organométallique (MOF-5). De plus, plusieurs métaux nobles (Ni, Pd et Pt) ont été choisis pour leur facilité à dissocier l’hydrogène et à former des alliages (Pd-Ni) avec différentes compositions en milieu aqueux (oxydant). Une méthode d’imprégnation par voie chimique ainsi que le broyage mécanique ont été utilisés pour la synthèse des hybrides. L’étude des propriétés structurales, texturales et thermodynamiques (hydrogénation) des composites CT/Pd a montré qu’un effet coopératif existe entre les pores du CT et les nanoparticules métalliques pendant le processus d’ad/absorption d’hydrogène. Cette interaction entraîne une amélioration de la capacité d’hydrogénation par rapport à chacun des constituants de l’hybride. / Nowadays many technological and scientific constraints have limited the finding of a suitable system and/or material able to reversibly store hydrogen at room temperature and ambient pressure for automotive application. An interesting way to overcome such limits could be the synthesis of hybrid materials (porous materials/metals or alloys composites) for which the adsorption and absorption processes can be combined in order to get higher hydrogen storage capacity. In this work, several porous materials displaying a well defined nanometric pore structure have been investigated. Among them a carbon template (CT) and a metal organic framework (MOF-5) have been chosen. In addition, several noble metals (Ni, Pd and Pt) have been used due to their ability to dissociate hydrogen and to form alloys. Two synthesis routes have been followed in order to synthesize hybrid composites: metal salts infiltration and mechanical grinding. In particular, the investigation of the structural, textural and hydrogen storage properties of the CT/metal composites has proven that a synergic mechanism between the CT pores and the metallic nanoparticles takes place during the hydrogen ad/absorption process. This interaction leads to an enhancement of the hydrogen storage capacity of each hybrid component taken separately.
|
7 |
Premiers stades d’oxydations d’alliages métalliques complexes Al-Cu et AlCo / First stages of oxidation of complex metallic alloys Al-Cu and Al-CoWarde, Micheline 04 July 2012 (has links)
Les alliages métalliques complexes (CMAs) sont des intermétalliques dont la structure est basée sur une maille unitaire géante pouvant contenir jusqu’à plusieurs milliers d’atomes. La maille unitaire est décorée par des clusters de haute symétrie, qui gouvernent les propriétés physiques de ces matériaux mais, jusqu’à présent, la réactivité chimique de ces matériaux a été peu étudiée. Le but de cette thèse était de comprendre l’influence de la complexité structurale et de la nature du métal de transition sur les premiers stades d’oxydation des alliages complexes Al-TM (TM= Co, Cu). L’influence de la complexité structurale a été examinée en étudiant des intermétalliques appartenant à la même famille (Al-Co) mais présentant une complexité structurale différente (Al9Co2, 22 atomes/maille unitaire et Al13Co4, 102 atomes/maille unitaire). L’influence du métal de transition a été étudiée en comparant les résultats obtenus sur Al9Co2, Al13Co4 et Al4Cu9 (52 atomes/maille unitaire). Les premiers stades d’adsorption, sous ultravide, d’oxygène moléculaire sur des surfaces propres Al4Cu9(110), Al9Co2(001) et Al13Co4(100) à différentes températures et dans une gamme de pression 10-8-10-7 mbar ont été suivis par LEED, XPS et STM.Pour les trois surfaces étudiées, seul l’aluminium est oxydé dans les conditions expérimentales utilisées. A température ambiante une couche désordonnée d’oxyde d’aluminium d’environ 1,34 nm est formée sur Al4Cu9, qui cristallise après chauffage à 650 °C pour former un film d’oxyde de structure sixton. Sur les surfaces d’alliages Al-Co, la couche désordonnée formée à température ambiante est plus fine (0,54 à 0,43 nm) et ne cristallise pas après recuit. Par contre, un oxyde de structure sixton est formé après oxydation de la surface de Al9Co2 à 500 °C. La formation de cette phase oxydée cristallisée est gouvernée par la compétition entre la ségrégation de l’aluminium et la diffusion de l’oxygène. Lorsque la ségrégation d’aluminium est insuffisante ou la diffusion d’oxygène trop rapide, cet oxyde n’est pas observé. La mobilité des atomes d’aluminium, liée au degré de covalence des liaisons intermétalliques, est donc le facteur prépondérant pour la structure du film d’oxyde formé. / Complex metallic alloys (CMAs) are intermetallics having a crystalline structure based on a giant unit cell which can contain up to several thousands of atoms. The cell structure is usually decorated with highly symmetric clusters which can affect the alloy physical properties. So far, very few studies of the chemical reactivity of these materials have been published. The aim of the thesis was to understand the influence of the structural complexity and of the nature of the transition metal on the oxidation of Al-TM (TM=Co, Cu). The influence of structural complexity was examined by studying intermetallics belonging to the same Al-Co family but showing different structural complexity (Al9Co2, 22 atoms/unit mesh and Al13Co4, 102 atoms/unit mesh). The effect of the transition metal was studied by comparing the results obtained on Al9Co2, Al13Co4 and Al4Cu9 (52 atoms/unit mesh) surfaces. The early stages of molecular oxygen adsorption on clean Al4Cu9(110), Al9Co2(001) and Al13Co4(100) surfaces at different temperatures and in the pressure range 10-8-10-7 mbar was followed using LEED, XPS and STM.For all surfaces studied, aluminum is the only element oxidised in our experimental conditions. At room temperature, a thin layer (1.34 nm thick) of disordered aluminium oxide is formed on Al4Cu9, which crystallises following annealing at 650 °C to form a sixton structure. On the Al-Co surfaces, the disordered oxide layer formed at room temperature is thinner (0.53 to 0.43 nm) and remains disordered after annealing at various temperatures. However, an ordered oxide with the sixton structure is formed after oxidation of the Al9Co2 surface at 500 °C. The formation of the ordered oxide layer is governed by the competition between aluminium segregation and oxygen diffusion. When aluminium segregation is too low or oxygen diffusion too fast, the ordered phase is not observed. Therefore, the aluminium atoms mobility, hence the degree of covalency of the intermetallic bonds, is the main parameter governing surface oxidation of these materials.
|
8 |
Structuration multi-échelle d'alliages métalliques au moyen d'un laser FemtosecondeBizi Bandoki, Pavel 08 June 2012 (has links) (PDF)
De nombreuses applications industrielles mettent en évidence l'importance des propriétés de mouillage des surfaces métalliques que ce soit directement pour les propriétés d'écoulement de fluides sur ces surfaces ou indirectement pour leur lien avec les phénomènes d'adhésion. Les travaux de Wenzel (1936) et de Cassie -Baxter (1944) ont montré que cette mouillabilité dépendait à la fois de la tension superficielle du solide mais aussi de sa topographie de surface. Ainsi la maîtrise et l'optimisation de ces propriétés nécessitent le contrôle de ces deux aspects, à l'image de la feuille de lotus dont le caractère super-hydrophobe réside à la fois en la présence d'une cire hydrophobe et d'une rugosité multi-échelle. Ces observations sont à l'origine, cette dernière décennie, du développement des techniques de gravures chimiques pour réaliser des texturations superficielles de matériaux et contrôler leur mouillabilité. Afin de surmonter certaines limitations de ces techniques et privilégier un procédé par voie sèche, nous avons envisagé de structurer la surface d'alliages métalliques de titane, d'aluminium, et de différents aciers inoxydables, au moyen d'un traitement de surface par laser femtoseconde. L'analyse topographique de la surface des matériaux (profilométrie optique, AFM, MEB) en fonction des paramètres d'irradiation du laser comme la densité de puissance laser, le nombre d'impulsions et le décalage latéral du faisceau en configuration balayage, a montré l'efficacité de ce procédé pour générer des texturations multi-échelles. Les différentes morphologies de textures peuvent être associées à des transitions de régimes dans l'interaction laser - matière (ripples, spikes, ...). L'analyse chimique et structurale (DRX, XPS) des surfaces traitées a mis en évidence des modifications microstructurales dues aux effets thermiques du laser ainsi qu'une évolution de l'état chimique de la surface dont les effets sur la mouillabilité sont importants. L'hydrophobie des surfaces métalliques a été considérablement accentuée par le traitement laser. Ces résultats pourront être exploités pour différentes applications industrielles notamment comme moyen de contrôler l'état de surface des moules de plasturgie.
|
9 |
Synthèse, caractérisation et étude des propriétés thermodynamiques d'hydrogénation de nanocomposites matériaux poreux / métaux-alliagesCampesi, Renato 13 November 2008 (has links) (PDF)
Plusieurs verrous scientifiques et technologiques empêchent aujourd'hui de développer une technique et/ou un matériau qui permette de stocker une quantité importante d'hydrogène à pression et température ambiante dans un volume et un poids acceptable pour des applications embarquées. Une possible solution consiste à synthétiser des matériaux hybrides (matériaux poreux/métaux ou alliages) où les processus d'adsorption et d'absorption pourraient coopérer pour obtenir une capacité de stockage d'hydrogène en adéquation avec les besoins des applications. Notre travail a consisté à identifier et caractériser différents matériaux poreux ayant une organisation de pores bien définie et une taille de l'ordre de quelques nanomètres. Parmi eux, ont été choisis : une réplique de carbone (CT) et un réseau organométallique (MOF-5). De plus, plusieurs métaux nobles (Ni, Pd et Pt) ont été choisis pour leur facilité à dissocier l'hydrogène et à former des alliages (Pd-Ni) avec différentes compositions en milieu aqueux (oxydant). Une méthode d'imprégnation par voie chimique ainsi que le broyage mécanique ont été utilisés pour la synthèse des hybrides. L'étude des propriétés structurales, texturales et thermodynamiques (hydrogénation) des composites CT/Pd a montré qu'un effet coopératif existe entre les pores du CT et les nanoparticules métalliques pendant le processus d'ad/absorption d'hydrogène. Cette interaction entraîne une amélioration de la capacité d'hydrogénation par rapport à chacun des constituants de l'hybride.
|
10 |
Dynamique de la formation de la structure de grains dans les alliages métalliques et dans le silicium multi-cristallin pour les applications photovoltaïquesMangelinck-Noël, Nathalie 03 July 2013 (has links) (PDF)
Mes travaux depuis mon recrutement au CNRS et actuellement au sein de l'équipe MCA de l'IM2NP concernent principalement la solidification des matériaux. Les propriétés des matériaux sont largement contrôlées par la microstructure de solidification, les structures de grains et les ségrégations laissées dans le solide avant toute mise en forme et traitement postérieurs. Pour élaborer des matériaux possédant des propriétés définies, sur mesure et de façon reproductible, il est donc nécessaire de maîtriser les mécanismes qui lient les procédés d'élaboration à la structure interne à diverses échelles des matériaux. Mes travaux de recherche vont dans le sens de l'approfondissement de la connaissance de ces mécanismes et, à plus long terme, de l'application de ces recherches aux procédés industriels. La nécessité d'améliorer les procédés pour obtenir des pièces de plus en plus performantes et qui permettent des économies en énergie soulève de nombreuses questions métallurgiques pour la recherche et l'industrie. L'amélioration des procédés nécessite de comprendre les mécanismes physico-chimiques qui entrent en jeu pendant la phase de solidification. De plus, pour être prédictives et quantitatives, les simulations numériques largement utilisées en milieu industriel doivent être nourries par la connaissance de ces mécanismes, leur formulation mathématique et les paramètres entrant en jeu. Dans les alliages métalliques, j'étudie plus particulièrement les mécanismes de la formation de la structure de grains, de la transition colonnaire équiaxe (CET), des ségrégations induites par cette structure. Les grains colonnaires et équiaxes résultent de dendrites avec différentes morphologies. Les dendrites colonnaires sont allongées dans une direction tandis que les grains équiaxes n'ont pas de direction privilégiée. A cause de leur forme, les grains équiaxes permettent d'obtenir des propriétés mécaniques isotropes pour le matériau final et des champs de concentration plus homogènes que dans le cas de la croissance colonnaire. En fonction de l'application, l'un ou l'autre type de grain est préféré et doit donc être favorisé par le procédé de solidification (par exemple : les grains équiaxes dans les pièces de moteur, les grains colonnaires voire un monograin dans les aubes de turbines). En conséquence, la compréhension des mécanismes physico-chimiques qui contrôlent la CET est une question critique en métallurgie et qui reste d'actualité. Les grains équiaxes peuvent apparaître de deux manières au cours de la solidification. La première est la germination hétérogène sur des particules incluses volontairement dans l'alliage comme cela est fait couramment dans l'industrie de l'aluminium par exemple ou, sur des impuretés ou des précipités présents naturellement dans l'alliage. La seconde est le détachement de branches dendritiques secondaires dans la zone pâteuse ce qui est admis comme la cause de l'apparition d'une zone équiaxe au centre des lingots de fonderie. Afin de comprendre et de caractériser les mécanismes de la dynamique de formation de la structure de grains dans les alliages métalliques, mon programme de recherche comporte trois volets : * l'étude de la structure de grains et de la fragmentation (Chapitre 1) * l'étude de la CET en présence d'affinants dans des alliages à base aluminium (Chapitre 2) * l'influence de la convection au cours de la solidification de ces alliages (Chapitre 3). Mon approche est expérimentale et comporte des expériences originales: 1- Caractérisation in situ et en temps réel de la dynamique de la solidification d'alliages métalliques proches des alliages industriels par imagerie X synchrotron. 2- Etude des effets de la convection naturelle, de la convection contrôlée par un champ ou un stimulus externe ou, utilisation de la microgravité (absence de convection naturelle et de phénomènes de sédimentation). Par ailleurs, depuis 2008, je développe au sein de l'équipe MCA une nouvelle thématique de recherche pour laquelle j'ai mis en place un projet (Si-X : Caractérisation et compréhension de la cristallisation du SiIicium photovoltaïque: imagerie X synchrotron) financé par l'ANR HABISOL. Les cellules photovoltaïques (PV) sont amenées à devenir une des composantes majeures de l'habitat écologique de demain. Les différentes étapes d'élaboration des cellules PV à base de silicium (purification, cristallisation, traitements intermédiaires, procédé cellules) concourent au rendement des cellules PV. Dans ce cadre, je m'intéresse à la phase de cristallisation/solidification. Jusqu'à présent, du silicium en provenance de l'industrie microélectronique était employé pour fabriquer les cellules PV mais cette filière est très coûteuse et est tributaire de l'industrie microélectronique pour l'approvisionnement en silicium de qualité suffisante. D'autres voies d'approvisionnement et de fabrication du matériau silicium de qualité suffisante pour les applications PV sont explorées mais ces matériaux silicium sources doivent être considérés comme de nouveaux matériaux vis-à-vis des procédés d'élaboration de lingots et de cellules. En conséquence, un certain nombre de problèmes liés à la solidification de ces matériaux doivent être (ré)-examinés avec attention même pour des procédés établis pour les matériaux en provenance de l'industrie microélectronique. D'une manière générale, dans le Si multi-cristallin utilisé massivement pour la fabrication des cellules photovoltaïques, le rendement PV de la cellule est complètement différent en fonction de la structure de grains du lingot. Par conséquent, il est indispensable de contrôler et donc de comprendre la formation de la structure de grains issue de l'étape de solidification du Si multi-cristallin. Ces travaux sur le Si multi-cristallin font l'objet du chapitre 4. Pour les deux principaux types de matériaux que j'étudie (alliages métalliques, Si PV) la problématique de la solidification et en particulier de la formation de la structure de grains est essentielle. En revanche, la croissance du silicium multi-cristallin, en général facettée, est totalement différente de celle des alliages métalliques classiques ce qui ouvre des perspectives intéressantes pour la compréhension de mécanismes peu abordés jusqu'à présent dans nos travaux : effet de l'orientation cristallographique, macles, croissance facettée.
|
Page generated in 0.1563 seconds