• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un modèle 3D Automate Cellulaire-Éléments Finis (CAFE) parallèle pour la prédiction de structures de grains lors de la solidification d'alliages métalliques

Carozzani, Tommy 04 December 2012 (has links) (PDF)
La formation de la structure de grains dans les métaux pendant la solidification est déterminante pour les propriétés mécaniques et électroniques des pièces coulées. En plus de la texture donnée au matériau, la germination et la croissance des grains sont liées en particulier avec la formation des phases thermodynamiques et les inhomogénéités en composition d'éléments d'alliage. La structure de grains est rarement modélisée à l'échelle macroscopique, d'autant plus que l'approximation 2D est très souvent injustifiée. Dans ces travaux, la germination et la croissance de chaque grain individuel sont suivies avec un modèle macroscopique 3D CAFE. La microstructure interne des grains n'est pas explicitement résolue. Pour valider les approximations faites sur cette microstructure, une comparaison directe avec un modèle microscopique "champ de phase" a été réalisée. Celle-ci a permis de valider les hypothèses de construction du modèle CAFE, de mettre en avant le lien entre données calculées par les modèles microscopiques et paramètres d'entrée des modèles à plus grande échelle, et les domaines de validité de chaque modèle. Dans un deuxième temps, un couplage avec la ségrégation chimique et les bases de données thermodynamiques a été mise en place et appliquée sur un alliage binaire étain-plomb. Une expérience de macroségrégation par convection naturelle a été simulée. L'accord entre les courbes de température expérimentales et simulées atteint une précision de l'ordre de 1K, et la recalescence est correctement prédite. Les cartes de compositions sont comparables qualitativement, ainsi que la structure de grains. Les avantages du suivi de la structure ont été mis en évidence par rapport à une simulation par éléments finis classique. De plus, il a été montré que le calcul 3D était ici indispensable. Enfin, une implémentation parallèle optimisée du code a permis d'appliquer le modèle CAFE à un lingot de silicium polycristallin industriel de dimensions 0,192 x 0,192 x 2,08m, avec une taille de cellules de 250µm. Au total, 4,9 milliards de cellules sont représentées sur le domaine, et la germination et la croissance de 1,6 million de grains sont suivies.
2

Modélisation tridimensionnelle Automate Cellulaire - Éléments Finis (CAFE) pour la simulation du développement des structures de grains dans les procédés de soudage GTAW / GMAW

Chen, Shijia 04 July 2014 (has links) (PDF)
Le développement des structures de grains se formant durant les procédés de soudage par fusion a un large impact sur les propriétés et la résistance mécaniques des assemblages. Des défauts, tels que la fissuration à chaud, sont aussi liés à la texturation de grains propre à l'étape de solidification. La simulation directe du développement tri-dimensionnelle (3D) des structures de grains dans ces procédés, à l'échelle industrielle, est rarement proposée. Dans ce travail, une modélisation couplée 3D Automate Cellulaire (CA) - Eléments Finis (FE) est proposée pour prédire la formation des structures de grains dans les procédés de soudage multipasses GTAW (Gas Metal Arc Welding) et GMAW (Gas Metal Arc Welding). A l'échelle macroscopique, la modélisation FE permet la résolution des équations de conservation de la masse, de l'énergie et de la quantité de mouvement pour l'ensemble du domaine en s'appuyant sur un maillage adaptatif. Pour le procédé GMAW avec apport de matière, le modèle FE est enrichi et développé dans une approche level set (LS) afin de modéliser l'évolution de l'interface métal / air due au développement du cordon de soudure. Le domaine FE contient ainsi la pièce étudiée et l'air environnant dans lequel le cordon se développe. Les calculs FE sont couplés avec l'approche CA utilisée pour modéliser le développement de la structure de grains. Un maillage fixe ('maillage CA') est superposé au maillage adaptatif FE ('maillage FE'). Les champs macroscopiques propres au maillage FE sont ainsi interpolés entre le maillage adaptatif FE et le maillage fixe CA. Une nouvelle stratégie d'allocation / désallocation de la grille de cellules CA est ensuite utilisée basée sur l'allocation / désallocation des éléments du maillage CA. La grille CA est constituée d'un ensemble régulier de cellules cubiques superposées au domaine soudée. A l'échelle micro-, la grille est utilisée afin de simuler les étapes de fusion et solidification, à la frontière entre le domaine pâteux et le bain liquide, durant le processus de soudage. Les évolutions de températures des cellules sont définies par interpolation du maillage CA. Un couplage du modèle avec les chemins de solidification et les évolutions enthalpiques tabulés est aussi implémenté, permettant de suivre la thermique et les évolutions de fractions de phase propre à l'évolution du procédé. Avec de réduire les temps de calcul et la quantité de mémoire informatique nécessaire à ces simulations, une optimisation des maillages FE/CA et des tailles de cellules CA est proposée pour les deux approches FE et CA. La modélisation 3D proposée est appliquée à la simulation de la formation des structures de solidification formées durant le soudage GTAW et GMAW multipasses de pièces d'acier inoxydables de nuances UR 2202. Dans le procédé GTAW, l'influence de l'évolution des structures de grains selon les paramètres procédés est étudiée. L'orientation normale des grains avec l'augmentation de la vitesse de soudage est montrée. Dans le procédé GMAW, la modélisation permet de simuler la refusion et la croissance des grains des couches successives. De manière générale, les structures de grains prédites montrent qualitativement les évolutions attendues présentées dans la littérature.
3

Dynamique de la formation de la structure de grains dans les alliages métalliques et dans le silicium multi-cristallin pour les applications photovoltaïques

Mangelinck-Noël, Nathalie 03 July 2013 (has links) (PDF)
Mes travaux depuis mon recrutement au CNRS et actuellement au sein de l'équipe MCA de l'IM2NP concernent principalement la solidification des matériaux. Les propriétés des matériaux sont largement contrôlées par la microstructure de solidification, les structures de grains et les ségrégations laissées dans le solide avant toute mise en forme et traitement postérieurs. Pour élaborer des matériaux possédant des propriétés définies, sur mesure et de façon reproductible, il est donc nécessaire de maîtriser les mécanismes qui lient les procédés d'élaboration à la structure interne à diverses échelles des matériaux. Mes travaux de recherche vont dans le sens de l'approfondissement de la connaissance de ces mécanismes et, à plus long terme, de l'application de ces recherches aux procédés industriels. La nécessité d'améliorer les procédés pour obtenir des pièces de plus en plus performantes et qui permettent des économies en énergie soulève de nombreuses questions métallurgiques pour la recherche et l'industrie. L'amélioration des procédés nécessite de comprendre les mécanismes physico-chimiques qui entrent en jeu pendant la phase de solidification. De plus, pour être prédictives et quantitatives, les simulations numériques largement utilisées en milieu industriel doivent être nourries par la connaissance de ces mécanismes, leur formulation mathématique et les paramètres entrant en jeu. Dans les alliages métalliques, j'étudie plus particulièrement les mécanismes de la formation de la structure de grains, de la transition colonnaire équiaxe (CET), des ségrégations induites par cette structure. Les grains colonnaires et équiaxes résultent de dendrites avec différentes morphologies. Les dendrites colonnaires sont allongées dans une direction tandis que les grains équiaxes n'ont pas de direction privilégiée. A cause de leur forme, les grains équiaxes permettent d'obtenir des propriétés mécaniques isotropes pour le matériau final et des champs de concentration plus homogènes que dans le cas de la croissance colonnaire. En fonction de l'application, l'un ou l'autre type de grain est préféré et doit donc être favorisé par le procédé de solidification (par exemple : les grains équiaxes dans les pièces de moteur, les grains colonnaires voire un monograin dans les aubes de turbines). En conséquence, la compréhension des mécanismes physico-chimiques qui contrôlent la CET est une question critique en métallurgie et qui reste d'actualité. Les grains équiaxes peuvent apparaître de deux manières au cours de la solidification. La première est la germination hétérogène sur des particules incluses volontairement dans l'alliage comme cela est fait couramment dans l'industrie de l'aluminium par exemple ou, sur des impuretés ou des précipités présents naturellement dans l'alliage. La seconde est le détachement de branches dendritiques secondaires dans la zone pâteuse ce qui est admis comme la cause de l'apparition d'une zone équiaxe au centre des lingots de fonderie. Afin de comprendre et de caractériser les mécanismes de la dynamique de formation de la structure de grains dans les alliages métalliques, mon programme de recherche comporte trois volets : * l'étude de la structure de grains et de la fragmentation (Chapitre 1) * l'étude de la CET en présence d'affinants dans des alliages à base aluminium (Chapitre 2) * l'influence de la convection au cours de la solidification de ces alliages (Chapitre 3). Mon approche est expérimentale et comporte des expériences originales: 1- Caractérisation in situ et en temps réel de la dynamique de la solidification d'alliages métalliques proches des alliages industriels par imagerie X synchrotron. 2- Etude des effets de la convection naturelle, de la convection contrôlée par un champ ou un stimulus externe ou, utilisation de la microgravité (absence de convection naturelle et de phénomènes de sédimentation). Par ailleurs, depuis 2008, je développe au sein de l'équipe MCA une nouvelle thématique de recherche pour laquelle j'ai mis en place un projet (Si-X : Caractérisation et compréhension de la cristallisation du SiIicium photovoltaïque: imagerie X synchrotron) financé par l'ANR HABISOL. Les cellules photovoltaïques (PV) sont amenées à devenir une des composantes majeures de l'habitat écologique de demain. Les différentes étapes d'élaboration des cellules PV à base de silicium (purification, cristallisation, traitements intermédiaires, procédé cellules) concourent au rendement des cellules PV. Dans ce cadre, je m'intéresse à la phase de cristallisation/solidification. Jusqu'à présent, du silicium en provenance de l'industrie microélectronique était employé pour fabriquer les cellules PV mais cette filière est très coûteuse et est tributaire de l'industrie microélectronique pour l'approvisionnement en silicium de qualité suffisante. D'autres voies d'approvisionnement et de fabrication du matériau silicium de qualité suffisante pour les applications PV sont explorées mais ces matériaux silicium sources doivent être considérés comme de nouveaux matériaux vis-à-vis des procédés d'élaboration de lingots et de cellules. En conséquence, un certain nombre de problèmes liés à la solidification de ces matériaux doivent être (ré)-examinés avec attention même pour des procédés établis pour les matériaux en provenance de l'industrie microélectronique. D'une manière générale, dans le Si multi-cristallin utilisé massivement pour la fabrication des cellules photovoltaïques, le rendement PV de la cellule est complètement différent en fonction de la structure de grains du lingot. Par conséquent, il est indispensable de contrôler et donc de comprendre la formation de la structure de grains issue de l'étape de solidification du Si multi-cristallin. Ces travaux sur le Si multi-cristallin font l'objet du chapitre 4. Pour les deux principaux types de matériaux que j'étudie (alliages métalliques, Si PV) la problématique de la solidification et en particulier de la formation de la structure de grains est essentielle. En revanche, la croissance du silicium multi-cristallin, en général facettée, est totalement différente de celle des alliages métalliques classiques ce qui ouvre des perspectives intéressantes pour la compréhension de mécanismes peu abordés jusqu'à présent dans nos travaux : effet de l'orientation cristallographique, macles, croissance facettée.
4

Développement d'un modèle 3D Automate Cellulaire-Éléments Finis (CAFE) parallèle pour la prédiction de structures de grains lors de la solidification d'alliages métalliques / Development of a 3D parallel Cellular Automaton-Finite Element (CAFE) model for grain structure prediction during solidification of metallic alloys

Carozzani, Tommy 04 December 2012 (has links)
La formation de la structure de grains dans les métaux pendant la solidification est déterminante pour les propriétés mécaniques et électroniques des pièces coulées. En plus de la texture donnée au matériau, la germination et la croissance des grains sont liées en particulier avec la formation des phases thermodynamiques et les inhomogénéités en composition d'éléments d'alliage. La structure de grains est rarement modélisée à l'échelle macroscopique, d'autant plus que l'approximation 2D est très souvent injustifiée. Dans ces travaux, la germination et la croissance de chaque grain individuel sont suivies avec un modèle macroscopique 3D CAFE. La microstructure interne des grains n'est pas explicitement résolue. Pour valider les approximations faites sur cette microstructure, une comparaison directe avec un modèle microscopique "champ de phase" a été réalisée. Celle-ci a permis de valider les hypothèses de construction du modèle CAFE, de mettre en avant le lien entre données calculées par les modèles microscopiques et paramètres d'entrée des modèles à plus grande échelle, et les domaines de validité de chaque modèle. Dans un deuxième temps, un couplage avec la ségrégation chimique et les bases de données thermodynamiques a été mise en place et appliquée sur un alliage binaire étain-plomb. Une expérience de macroségrégation par convection naturelle a été simulée. L'accord entre les courbes de température expérimentales et simulées atteint une précision de l'ordre de 1K, et la recalescence est correctement prédite. Les cartes de compositions sont comparables qualitativement, ainsi que la structure de grains. Les avantages du suivi de la structure ont été mis en évidence par rapport à une simulation par éléments finis classique. De plus, il a été montré que le calcul 3D était ici indispensable. Enfin, une implémentation parallèle optimisée du code a permis d'appliquer le modèle CAFE à un lingot de silicium polycristallin industriel de dimensions 0,192 x 0,192 x 2,08m, avec une taille de cellules de 250µm. Au total, 4,9 milliards de cellules sont représentées sur le domaine, et la germination et la croissance de 1,6 million de grains sont suivies. / Grain structure formation during solidification of metal parts has a big impact on the final mechanical and electronic properties. Besides determining the crystallographic texture, the nucleation and growth of grains are linked and interact with the appearance of thermodynamic phases and inhomogeneities in the alloy's chemical elements distribution. Grain structure is very rarely modeled on the macro scale, especially because the 2D approximation is often not justified. In this work, the nucleation and growth of each individual grain is tracked with the 3D CAFE macroscopic model. The internal microscopic structure is not explicitly solved. In order to validate the assumptions concerning this microstructure, a direct comparison has been done with a microscopic "phase field" model. That comparison led to the validation of some of the hypothesis on which the CAFE model is built. Moreover, the various data computed in microscopic models that can be used as input parameters of the macroscopic models have been identified, and the limits of each model clearly shown. Secondly, coupling with macrosegregation and thermodynamic databases was achieved, and applied to a binary tin-lead alloy. An experiment featuring macrosegregation induced by natural convection was modeled. The agreement between the experimental and the predicted cooling curves is within 1K, and the recalescence is found to be correctly predicted. The composition maps and the grain structure agree qualitatively with the experiment. The improvement due to structure tracking was demonstrated, regarding a standard finite elements resolution. It was also shown that the 3D simulation is mandatory to reach a good description. Finally, the model was implemented through an optimized parallel algorithm. This permitted to apply the CAFE model on an industrial scale polycrystalline silicon ingot, which dimensions are 0,192 x 0,192 x 2,08m. The cell size is chosen to be 250µm. In total, 4,9 billions of cells were represented, and the nucleation and growth of 1,6 million of grains were tracked.
5

Modélisation tridimensionnelle Automate Cellulaire - Éléments Finis (CAFE) pour la simulation du développement des structures de grains dans les procédés de soudage GTAW / GMAW / Three dimensional Cellular Automaton – Finite Element (CAFE) modeling for the grain structures development in Gas Tungsten / Metal Arc Welding processes

Chen, Shijia 04 July 2014 (has links)
Le développement des structures de grains se formant durant les procédés de soudage par fusion a un large impact sur les propriétés et la résistance mécaniques des assemblages. Des défauts, tels que la fissuration à chaud, sont aussi liés à la texturation de grains propre à l'étape de solidification. La simulation directe du développement tri-dimensionnelle (3D) des structures de grains dans ces procédés, à l'échelle industrielle, est rarement proposée. Dans ce travail, une modélisation couplée 3D Automate Cellulaire (CA) – Eléments Finis (FE) est proposée pour prédire la formation des structures de grains dans les procédés de soudage multipasses GTAW (Gas Metal Arc Welding) et GMAW (Gas Metal Arc Welding). A l'échelle macroscopique, la modélisation FE permet la résolution des équations de conservation de la masse, de l'énergie et de la quantité de mouvement pour l'ensemble du domaine en s'appuyant sur un maillage adaptatif. Pour le procédé GMAW avec apport de matière, le modèle FE est enrichi et développé dans une approche level set (LS) afin de modéliser l'évolution de l'interface métal / air due au développement du cordon de soudure. Le domaine FE contient ainsi la pièce étudiée et l'air environnant dans lequel le cordon se développe. Les calculs FE sont couplés avec l'approche CA utilisée pour modéliser le développement de la structure de grains. Un maillage fixe (‘maillage CA') est superposé au maillage adaptatif FE (‘maillage FE'). Les champs macroscopiques propres au maillage FE sont ainsi interpolés entre le maillage adaptatif FE et le maillage fixe CA. Une nouvelle stratégie d'allocation / désallocation de la grille de cellules CA est ensuite utilisée basée sur l'allocation / désallocation des éléments du maillage CA. La grille CA est constituée d'un ensemble régulier de cellules cubiques superposées au domaine soudée. A l'échelle micro-, la grille est utilisée afin de simuler les étapes de fusion et solidification, à la frontière entre le domaine pâteux et le bain liquide, durant le processus de soudage. Les évolutions de températures des cellules sont définies par interpolation du maillage CA. Un couplage du modèle avec les chemins de solidification et les évolutions enthalpiques tabulés est aussi implémenté, permettant de suivre la thermique et les évolutions de fractions de phase propre à l'évolution du procédé. Avec de réduire les temps de calcul et la quantité de mémoire informatique nécessaire à ces simulations, une optimisation des maillages FE/CA et des tailles de cellules CA est proposée pour les deux approches FE et CA. La modélisation 3D proposée est appliquée à la simulation de la formation des structures de solidification formées durant le soudage GTAW et GMAW multipasses de pièces d'acier inoxydables de nuances UR 2202. Dans le procédé GTAW, l'influence de l'évolution des structures de grains selon les paramètres procédés est étudiée. L'orientation normale des grains avec l'augmentation de la vitesse de soudage est montrée. Dans le procédé GMAW, la modélisation permet de simuler la refusion et la croissance des grains des couches successives. De manière générale, les structures de grains prédites montrent qualitativement les évolutions attendues présentées dans la littérature. / Grain structure formation during fusion welding processes has a significant impact on the mechanical strength of the joint. Defects such as hot cracking are also linked to the crystallographic texture formed during the solidification step. Direct simulation of three-dimensional (3D) grain structure at industrial scale for welding processes is rarely modeled. In this work, a 3D coupled Cellular Automaton (CA) – Finite Element (FE) model is proposed to predict the grain structure formation during multiple passes Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW). At the macroscopic scale, the FE model solves the mass, energy and momentum conservation equations for the whole system based on an adaptive mesh. For GMAW with metal addition, the FE model is enriched and established in a level set (LS) approach in order to model the evolution of the metal/air interface due to the weld bead development. The FE domain then contains the workpiece and the surrounding air where the weld bead forms. FE computations are coupled with the CA approach used to model the grain structure evolution. A fixed mesh, referred to as CA mesh, is superimposed to the adaptive FE mesh. FE fields are interpolated between the adaptive FE mesh and the fixed CA mesh. A new dynamic allocation/deallocation strategy of a CA grid of cells is then used based on the dynamic activation/deactivation of the elements of the CA mesh. The CA grid is made of a regular lattice of cubic cells superimposed onto the welded domain. At the micro scale, this grid is used in order to simulate the melting and solidification steps at the boundaries between the mushy domain and the liquid pool during the welding process. The temperature evolutions of the cells are computed by interpolation from the CA mesh. Coupling with tabulated transformation paths and phase enthalpy is also implemented, which permits to track the phase amount and latent heat release during the process. In order to master the resolution time and memory cost of the simulations, a management of the FE/CA mesh dimensions and CA cell size is considered for both FE and CA models. The 3D CAFE model is applied to simulate the formation of solidification structures during multiple passes GTAW and GMAW processes on a duplex stainless steel UR 2202. In GTAW, the evolution of the grain structures with respect to the welding process parameters is considered. The normal orientation of the grains with the increase of the heat source velocity is shown. In GMAW, the model is shown to compute the remelting and growth of successively deposited layers. Overall, the predicted structures qualitatively reveal the expected evolutions presented in the literature.

Page generated in 0.0987 seconds