• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Premiers stades d’oxydations d’alliages métalliques complexes Al-Cu et AlCo / First stages of oxidation of complex metallic alloys Al-Cu and Al-Co

Warde, Micheline 04 July 2012 (has links)
Les alliages métalliques complexes (CMAs) sont des intermétalliques dont la structure est basée sur une maille unitaire géante pouvant contenir jusqu’à plusieurs milliers d’atomes. La maille unitaire est décorée par des clusters de haute symétrie, qui gouvernent les propriétés physiques de ces matériaux mais, jusqu’à présent, la réactivité chimique de ces matériaux a été peu étudiée. Le but de cette thèse était de comprendre l’influence de la complexité structurale et de la nature du métal de transition sur les premiers stades d’oxydation des alliages complexes Al-TM (TM= Co, Cu). L’influence de la complexité structurale a été examinée en étudiant des intermétalliques appartenant à la même famille (Al-Co) mais présentant une complexité structurale différente (Al9Co2, 22 atomes/maille unitaire et Al13Co4, 102 atomes/maille unitaire). L’influence du métal de transition a été étudiée en comparant les résultats obtenus sur Al9Co2, Al13Co4 et Al4Cu9 (52 atomes/maille unitaire). Les premiers stades d’adsorption, sous ultravide, d’oxygène moléculaire sur des surfaces propres Al4Cu9(110), Al9Co2(001) et Al13Co4(100) à différentes températures et dans une gamme de pression 10-8-10-7 mbar ont été suivis par LEED, XPS et STM.Pour les trois surfaces étudiées, seul l’aluminium est oxydé dans les conditions expérimentales utilisées. A température ambiante une couche désordonnée d’oxyde d’aluminium d’environ 1,34 nm est formée sur Al4Cu9, qui cristallise après chauffage à 650 °C pour former un film d’oxyde de structure sixton. Sur les surfaces d’alliages Al-Co, la couche désordonnée formée à température ambiante est plus fine (0,54 à 0,43 nm) et ne cristallise pas après recuit. Par contre, un oxyde de structure sixton est formé après oxydation de la surface de Al9Co2 à 500 °C. La formation de cette phase oxydée cristallisée est gouvernée par la compétition entre la ségrégation de l’aluminium et la diffusion de l’oxygène. Lorsque la ségrégation d’aluminium est insuffisante ou la diffusion d’oxygène trop rapide, cet oxyde n’est pas observé. La mobilité des atomes d’aluminium, liée au degré de covalence des liaisons intermétalliques, est donc le facteur prépondérant pour la structure du film d’oxyde formé. / Complex metallic alloys (CMAs) are intermetallics having a crystalline structure based on a giant unit cell which can contain up to several thousands of atoms. The cell structure is usually decorated with highly symmetric clusters which can affect the alloy physical properties. So far, very few studies of the chemical reactivity of these materials have been published. The aim of the thesis was to understand the influence of the structural complexity and of the nature of the transition metal on the oxidation of Al-TM (TM=Co, Cu). The influence of structural complexity was examined by studying intermetallics belonging to the same Al-Co family but showing different structural complexity (Al9Co2, 22 atoms/unit mesh and Al13Co4, 102 atoms/unit mesh). The effect of the transition metal was studied by comparing the results obtained on Al9Co2, Al13Co4 and Al4Cu9 (52 atoms/unit mesh) surfaces. The early stages of molecular oxygen adsorption on clean Al4Cu9(110), Al9Co2(001) and Al13Co4(100) surfaces at different temperatures and in the pressure range 10-8-10-7 mbar was followed using LEED, XPS and STM.For all surfaces studied, aluminum is the only element oxidised in our experimental conditions. At room temperature, a thin layer (1.34 nm thick) of disordered aluminium oxide is formed on Al4Cu9, which crystallises following annealing at 650 °C to form a sixton structure. On the Al-Co surfaces, the disordered oxide layer formed at room temperature is thinner (0.53 to 0.43 nm) and remains disordered after annealing at various temperatures. However, an ordered oxide with the sixton structure is formed after oxidation of the Al9Co2 surface at 500 °C. The formation of the ordered oxide layer is governed by the competition between aluminium segregation and oxygen diffusion. When aluminium segregation is too low or oxygen diffusion too fast, the ordered phase is not observed. Therefore, the aluminium atoms mobility, hence the degree of covalency of the intermetallic bonds, is the main parameter governing surface oxidation of these materials.
2

Surface properties of complex intermetallics at the nanoscale : from fundamentals to applications / Propriétés de surface des intermétalliques complexes à l'échelle du nanomètre : du fondamental aux applications

Anand, Kanika 13 December 2018 (has links)
Les alliages métalliques complexes (CMAs) sont des composés intermétalliques dont la structure cristallographique diffère de celle des alliages conventionnels par le nombre conséquent d'atomes dans la maille (jusqu'à plusieurs milliers d'atomes), généralement arrangés sous forme d'agrégats atomiques de haute symétrie. Ils sont prometteurs pour un certain nombre d'applications technologiques, en particulier les revêtements fonctionnels, en raison de leurs propriétés de surface uniques. Cette thèse a pour objectif, à la fois la détermination de la structure et des propriétés électroniques d’une surface d’un CMA de la famille des clathrates intermétalliques, et des propriétés de mouillage intrinsèques de plusieurs CMAs à base d’aluminium. Dans une première partie, nous nous sommes intéressés aux surfaces de bas indice (100) et (110) du clathrate Ba8Au5.25Ge40.75. Leurs structures atomiques et électroniques ont été déterminées en combinant des expériences de sciences des surfaces et des calculs basés sur la théorie de la fonctionnelle de la densité. La structure tridimensionnelle de Ba8Au5.25Ge40.75, formée d'un réseau de deux types de cages (structure hôte) à base de germanium et d’or, qui emprisonnent les atomes de Ba, induit une nanostructuration de la surface contrôlée par son orientation, puisque le type de cages préservées à la surface diffère pour les surfaces (100) et (110). Dans les deux cas, les atomes de Ba qui protrudent à la surface, ont un rôle primordial pour la stabilité de surface : ils assurent un transfert de charge qui sature les liaisons pendantes des atomes de germanium en surface. Dans une seconde partie, les propriétés intrinsèques de mouillage de plusieurs CMAs à base d’aluminium, ont été déterminées par une approche couplant des mesures de microscopie et des calculs ab initio. Expérimentalement, les angles de contact de gouttes de plomb (métal sonde) sur plusieurs surfaces de CMAs ont été systématiquement mesurés. Les angles précédents étant fonction, entre autres, de l’énergie interfaciale, des calculs d'énergie interfaciale ont été menés, d’une part avec un substrat d’un métal simple, Al(111), et d’autre part sur un substrat de CMA, Al13Co4(100). Les résultats obtenus mettent en évidence une forte influence de la structure de l’interface sur l’énergie interfaciale / Complex metallic alloys (CMAs) are intermetallic compounds possessing a large unit cell containing several tens to hundreds of atoms. Their structure can be described alternatively by the packing of highly symmetric atomic clusters. Clathrate (or cage) compounds are a new class of CMAs having a crystal structure described by a complex arrangement of covalently-bonded cages. The Ba8Au5.25Ge40.75 type-I clathrate is one such cage compound, whose bulk properties have been (and still are) extensively explored for thermoelectric applications. In fact, it is possible to tune the compound electronic structure by a fine control of its bulk composition. Regarding the properties of the Ba8Au5.25Ge40.75 surface, information remains scarce if not inexistent. However, it is known that the surfaces of CMAs often exhibit interesting surface properties. To this end, we have studied two low-index surfaces: BaAuGe(100) and BaAuGe(110) by a combination of experimental (XPS; LEED; STM) and computational (DFT) methods. Experimental results show no evidence for surface segregation and LEED patterns are consistent with (1x1) bulk terminations with no surface reconstruction. The interplay between the 3D nano-caged structure and 2D surfaces is investigated. We demonstrate that the surface structures of the two surfaces considered preserve the bulk structure cages in addition to an ordered arrangement of surface Ba atoms. The two surfaces are formed by a breakage of highly directional covalent bonds present within the framework, hence leading to destabilizing dangling bonds. Ab initio calculations show that the surface structure is stabilized through electron charge transfer from protruding Ba to surface Ge and Au atoms, saturating the dangling bonds. This charge-balance mechanism lifts the possible surface reconstruction envisaged. We reveal how the surface nanostructuration is surface orientation dependent. The results indicate that the surface electronic structure of BaAuGe(110) is impacted by the Au surface concentration. The surface models for BaAuGe(100) and BaAuGe(110) present a metallic character and low work function values, useful for further applications. Such structurally complex surfaces may also be used as templates for novel nanoscale architectures. Further in this work, we also applied the state-of-the-art surface science techniques to investigate the wetting properties of Al-based CMAs. In these experiments, chemically inert Pb element was used as a metal probe. Systematic analysis is done to find the correlation between the wetting properties and the electronic structure properties of these CMAs. Interfacial energy calculations have been performed to model the Pb/CMA interface based on few approaches reported in literature. We have tested these approaches on a moiré patterned Pb(111)/Al(111) interface. This interface is found to be controlled by geometric factors. Hence, an acquired understanding was applied to Pb deposited on Al13Co4(100) (Al-rich side) interface
3

Surfaces et films minces d'alliages métalliques complexes / Surfaces and thin films of complex metallic alloys

Duguet, Thomas 28 September 2009 (has links)
Après un chapitre d’introduction à propos des alliages métalliques complexes et leurs surfaces, le manuscrit est divisé en deux parties distinctes. La première partie (Chap.II) porte sur la détermination structurale de la surface d’ordre 2 de la phase décagonale Al-Cu-Co par LEED et STM. Les conclusions de ce chapitre indiquent (i) que la surface observée expérimentalement correspond à des terminaisons denses et riches en l’élément de plus faible énergie de surface (Al) et (ii) que la phase serait stabilisée par le terme entropique de l’énergie libre de Helmotz. Dans la deuxième partie de la thèse (Chap.III, IV et V), on applique une approche originale de science des surfaces pour résoudre un problème applicatif : l’adhérence des revêtements quasicristallins sur les substrats métalliques. On propose d’insérer une couche d’accrochage entre le revêtement et le substrat. L’alliage ?-Al4Cu9 est un bon candidat pour réaliser cette interface car il possède des propriétés structurales et électroniques intermédiaires entre un métal et un quasicristal. On élabore donc par MBE des interfaces modèles par adsorption puis recuit de Cu sur le quasicristal i-Al-Cu-Fe, puis d’Al sur Cu(111). Les expériences de photoémission, STM et LEED, ainsi que les calculs de DFT, démontrent la faisabilité d’une interface cohérente entre l’alliage de surface ?-Al4Cu9 et le Cu d’une part, et entre ?-Al4Cu9 et le quasicristal, d’autre part. Ces résultats fondamentaux sont reproduits avec succès dans le domaine applicatif, par l’élaboration de revêtements de phase ? par pulvérisation cathodique magnétron (Chap.V) / After an introductive chapter on complex metallic alloys and surfaces, the thesis is divided into two distinct parts. The first part (Chap.II) concerns the structural determination of the 2-fold surface of d-Al-Cu-Co quasicrystal, by using LEED and STM. The results show (i) that the experimental terraces correspond to dense and Al-rich terminations -the element with the lowest surface energy- and (ii) that this decagonal phase could be entropically stabilized. In the second part of the manuscript (Chap.III, IV and V), we apply a surface science approach to solve a technological bottleneck: the adherence of quasicrystalline coatings on metallic substrates. We propose to grow a buffer layer that would accommodate the differences between the two materials. For that purpose, the ?-Al4Cu9 phase is a good candidate as it shares electronic and structural properties with both substrate and coating. Hence, we synthesize model interfaces by using MBE, first by adsorption and annealing of Cu on the 5-f surface of i-Al-Cu-Fe quasicrystal and then in the Al on Cu(111) system. Photoemission, STM and LEED experiments, along with DFT calculations show that a coherent interface can be grown between the ?-Al4Cu9 surface alloy and both the Cu and the quasicrystal. Those fundamental results are successfully reproduced in the real world, by growing similar interfaces using magnetron sputterring (Chap.V)
4

Dynamique de réseau et conductivité thermique dans les alliages métalliques complexes / Lattices dynamics and thermal conductivity in the complex metallic alloys

Lory, Pierre-François 24 September 2015 (has links)
Les alliages métalliques complexes sont des matériaux qui présentent un ordre à longue distance caractérisé par de grandes mailles comprenant plusieurs centaines d’atomes disposés en clusters. Une propriété caractéristique des CMAs est une conductivité thermique de réseau, dû aux phonons, très faible (~1.3 W/m.K), ce qui donne un intérêt pour leur utilisation comme thermoélectriques. Malgré de récentes avancées sur les connaissances de leurs structures, la nature des modes de vibrations des phonons dans ces réseaux restent une question ouverte : quel est le rôle des clusters ? Est-ce qu’il y a des modes critiques ? Pour répondre à cette problématique, mon projet de thèse a eu pour objectif de comprendre la nature des modes de vibrations à l’échelle atomique et la relation avec la conductivité thermique de réseau sur deux systèmes : la phase o-Al13Co4 qui est un approximant de la phase décagonale AlNiCo et le clathrate Ba8Ge40.3Au5.25, présentant des propriétés thermoélectriques. Mes investigations combinent des expériences de diffusion inélastiques des neutrons et des rayons-X et des simulations à l’échelle atomique.Une analyse détaillée des résultats expérimentaux obtenus par diffusion inélastique sur monocristaux pour les branches acoustiques a permis de mettre en évidence, pour la première fois, un temps de vie fini des phonons acoustiques lorsqu’ils interagissent avec les modes de basses énergies liés aux atomes dans les clusters. Pour les deux systèmes étudiés, nous observons que la branche acoustique n’est plus linéaire et le temps de vie des phonons acoustiques est réduit à quelques picosecondes. Ce faible temps de vie dépend peu de la température comme la conductivité thermique. Les simulations à l’échelle atomique, en utilisant des calculs DFT et des potentiels de pairs oscillants pour des simulations de dynamique moléculaire, ont permis de montrer que ce temps de vie est un effet anharmonique lié au désordre de structure. Les simulations confirment la faible dépendance en température de ce temps de vie. Dans o-Al13Co4, nous avons calculé la conductivité thermique avec la dynamique moléculaire et la méthode de Green-Kubo. Pour Ba8Ge40.3Au5.25 nous avons appliqué un modèle phénoménologique pour l’estimer en utilisant les résultats INS. En conclusion nous démontrons les effets de la complexité structurale sur la conductivité thermique en lien avec la dynamique de réseau. / Complex metallic alloys are long range ordered materials, characterized by large cells, comprising several hundreds of atoms and cluster building blocks. A key property of CMAs is the low lattice thermal conductivity (1.3 W/m. K), which suggests a potential application for CMAs for thermoelectricity. Despite recent advances structure determination, the nature of the phonons modes remains an open question: do the clusters playing a role? Are there critical modes? To tackle this problem, my PhD project aims to understand the vibrational modes at atomic scale and the relation to lattice thermal conductivity in o-Al13Co4 which is an approximant of the quasicrystal, decagonal phase AlNiCo and the clathrate Ba8Ge40.3Au5.25. In this worked we have used Inelastic Neutron and X-ray Scattering experiments and atomic scale simulations, based on density functional theory and empirical pair potentials.A detailed analysis of the results of inelastic scattering experiments on monocrystals for the acoustic branches have shown, for the first time, a finite lifetime for acoustic phonons when they interact with the low-lying dispersion-less excitations due to atoms in the cluster. In both systems, we observe that when an acoustic branch flattens near the zone boundary, the phonon lifetime is a few picoseconds. The phonon lifetime is approximately independent of temperature like the lattice thermal conductivity. Lattice and molecular dynamics simulations with DFT and empirical, oscillating pair potentials show that the finite phonon lifetime is an anharmonic effect, due to structural disorder, explaining the weak temperature of the phonon lifetime. For o-Al13Co4, we have calculated the thermal conductivity with the Green-Kubo method based on equilibrium MD simulations. For Ba8Ge40.3Au5.25 we have developed a phenomenological model based on individual phonon modes. In conclusion, we have demonstrated how structural complexity affects thermal conductivity through the lattice dynamics.
5

Surfaces d'alliages métalliques complexes : structure, propriétés et nanostructuration / Complexe metallic alloys surfaces : structure, properties and nanostructuration

Addou, Rafik 29 March 2010 (has links)
Ce travail a permis de déterminer les structures atomique et électronique de deux surfaces d'alliages métalliques complexes à l'aide d'une approche multi-techniques supportée par des calculs ab intio de structure électronique. Les surfaces de ces cristaux ont pu être corrélées à certains plans présents dans les modèles structuraux disponibles. La terminaison dominante de la surface (100) d'Al13Co4 est identifiée comme un plan corrugué incomplet du volume. La surface (010) de Al3(Mn, Pd) présente un nombre conséquent d'imperfections structurales. À l'exception de certains sites lacunaires, elle est identique au plan corrugué complet du massif. Dans une seconde étape, ces échantillons ont été utilisés comme substrat pour la croissance de films minces métalliques. Les atomes de Pb déposés sur ces deux surfaces suivent un mode de croissance pseudomorphique jusqu'à la formation de la monocouche. Dans le cas de l'Al13Co4, le coefficient de collage du Pb s'annule une fois cette monocouche formée. Sur la surface Al3(Mn, Pd), le croissance de couches additionnelles de Pb est observée. L'adsorption du Cu sur Al13Co4 mène de nouveau à un mode de croissance pseudomorphique jusqu'à la monocouche. Au-delà de ce dépôt, la phase ß-Al(Cu, Co) apparaît en surface. Pour des dépôts à des températures plus élevées, la phase- ß est suivie par la formation de la phase ?-Al4Cu9. Les phases ß et ? croissent suivant deux domaines (110) orientés l'un par rapport à l'autre avec un angle de 72° / We report the investigation of pseudo-ten-fold surfaces on two complex metallic alloys considered as approximants to the decagonal quasicristal. The atomic and electronic structure of the both samples is investigated by means of a multi-technique approach supported by ab initio electronic structure calculations. The main termination of the (100) surface of Al13Co4 is attributed to an incomplete puckered layer. The (010) surface of Al3(Mn, Pd) exhibits an important amount of structural imperfections. With the exception of several vacancies, this surface is identical to the complete puckered layer. In a second stage, both surfaces have been used as templates for the growth of metallic thin films. On both surfaces, Pb adatoms adopt a pseudomorphic growth mode up to one monolayer. For the Al13Co4 surface, the sticking coefficient of Pb vanishes upon the completion of the monolayer. However, it remains sufficient for the growth of additional layers on the Al3(Mn, Pd) (010) surface. The adsorption of Cu on the Al13Co4 surface follows also a pseudomorphic growth mode up to one monolayer. The ß-Al(Cu, Co) phase appears for coverages greater than one monolayer. For higher temperature deposition, the ß-phase is followed by the formation of the ?-Al4Cu9 phase. Both ß and ? phases grow as two (110) domains rotated by 72° from each other

Page generated in 0.1042 seconds