• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical milling of Al-Cu-Fe quasicrystals and their Reinforcement in Aluminum matrix composites

Ali, Fahad 11 April 2012 (has links) (PDF)
In this thesis, the effect of mechanical deformation on structure, thermal stability and hardness of a single-phase spray-deposited quasicrystalline alloy with composition Al62.5Cu25Fe12.5 has been investigated in detail. The purpose of the investigation was to study the effect of mechanical milling at different milling speeds (which approximately scale with the milling intensity) on mechanically-induced phase transformations during milling and on the phase evolution during subsequent heating. The results of the milling experiments indicate that, irrespective of the milling speeds used, mechanical milling of Al62.5Cu25Fe12.5 quasicrystals leads to the formation of a disordered CsCl-type ß phase with grain size of about 10 – 20 nm. The analysis of the kinetics of the QC–to–ß phase transformation reveals that the milling intensity has a considerable effect on the characteristics of the transformation. The increase of the milling speed considerably shortens the incubation time needed to start the QC–to–ß phase transformation. Also, the overall transformation is much faster for milling at high speeds. The QC–to–ß phase transformation starts when the grain size of the quasicrystals is reduced to about 10 nm irrespective of the milling speed used and clearly indicates that a critical grain size of the quasicrystals for initiating the transformation exists. On the other hand, no critical value of lattice strain was found for the QC–to–ß transformation. This indicates that the phase transformation is controlled by the local length scale (i.e. the grain size) and by the corresponding grain boundaries rather than by the energy stored in the lattice. Energetic considerations obtained through a simple model based on the mass and velocity of the milling balls reveal that the energy needed for the QC–to–ß transformation increases with increasing the milling speed, that is, the energetic efficiency of the process decreases with increasing the milling intensity. This indicates that part the extra energy supplied during milling at high intensities is not used to induce the phase transformation but it is dissipated by heat. During heating, the milled powder displays a multi-step thermal behavior characterized by the grain growth of the disordered ß phase at low temperatures, followed, at higher temperatures, by its transformation into the original icosahedral quasicrystalline phase. The transformation is gradual and the quasicrystals and the disordered ß phase coexist over a temperature interval of more than 250 K. The phase transformations occurring during milling and subsequent annealing have a remarkable effect on the hardness, which can be tuned within a wide range of values (7–9.6 GPa) as a function of the volume fraction of the different phases. This suggests that a composite material with optimized mechanical properties can be produced by an appropriate thermo-mechanical treatment. The quasicrystals milled at a very low speed show a transition between Hall-Petch to inverse Hall-Petch behavior at a grain size of about 40 nm, which represents the critical value for grain size softening of the present Al62.5Cu25Fe12.5 quasicrystals. This behavior may be attributed to the complexity of the quasicrystalline structure and to its peculiar deformation mechanism at room temperature (i.e. shear banding), where meta-dislocation-assisted deformation is almost absent. In order to analyze the effectiveness of the Al62.5Cu25Fe12.5 quasicrystals as reinforcing agent in metal matrix composites, Al-based composites were synthesized by hot extrusion of elemental Al blended with different amounts of Al62.5Cu25Fe12.5 quasicrystalline particles. The work was focused on two specific aspects: evaluation of the mechanical properties through room temperature compression tests and modeling of the resulting properties. The addition of the quasicrystalline reinforcement is very effective for improving the room temperature mechanical properties of pure Al. The compressive strength increases from 155 MPa for pure Al to 330 and 407 MPa for the composites with 20 and 40 vol.% of reinforcement, respectively, reaching an ultimate strain of 55 % and 20 % before fracture occurs. These results indicate that the addition of the QC reinforcement leads to composite materials with compressive strengths exceeding that of pure Al by a factor of 2 – 2.5, while retaining appreciable plastic deformation. The mechanical properties of the composites have been modeled by taking into account the combined effect of load bearing, dislocation strengthening and matrix ligament size effects. The calculations are in very good agreement with the experimental results and reveal that the reduction of the matrix ligament size, which results in a similar strengthening effect as that observed for grain refinement, is the main strengthening mechanism in the current composites. Finally, the interfacial reaction between the Al matrix and the QC reinforcement has been used to further enhance the strength of the composites through the formation of a new microstructure consisting of the Al matrix reinforced with Al7Cu2Fe w-phase particles. The optimization of the structure-property relationship was done through the systematic variation of the processing temperature during consolidation. The mechanical behavior of these transformation-strengthened composites is remarkably improved compared to the parent material. The yield strength of the composites significantly increases as the Al + QC -> ω transformation progresses from 195 MPa for the sample reinforced only with QC particles to 400 MPa for the material where the Al + QC -> ω reaction is complete. These results clearly demonstrate that powder metallurgy, i.e. powder synthesis by ball milling followed by consolidation into bulk specimens, is an attractive processing route for the production of novel and innovative lightweight composites characterized by high strength combined with considerable plastic deformation. In addition, these findings indicate that the mechanical behavior of Al-based composites reinforced with Al62.5Cu25Fe12.5 quasicrystalline particles can be tuned within a wide range of strength and plasticity depending on the volume fraction of the reinforcement as well as on the extent of the interfacial reaction between Al matrix and QC reinforcing particles.
2

Evaluation of Quasicrystal Al-Cu-Fe Alloys for Tribological Applications

Nabelsi, Nezar 16 December 2013 (has links)
This research investigated the tribological performance of a composite material, formed from an ultra high molecular weight polyethylene (UHMWPE) matrix and quasicrystalline Al-Cu-Fe alloy powders. An evaluation was conducted for the microstructure, material properties, and tribological performance of quasicrystalline materials formed from Al-Cu-Fe alloys. Arc melting was used as the fabrication technique for these alloys, and some samples were additionally heat treated in an argon environment. Vickers microhardness testing was done to make comparisons to wear rate behavior of the various alloys. Tribological studies were conducted using a linear pinon- desk configuration to evaluate friction and wear. Research indicated the annealed samples of Al-Cu-Fe that formed icosahedral quasicrystalline phases, where the quasicrystalline phase was most dominant of the observed alloys, displayed the greatest wear resistance and hardness. Abrasive wear was observed in each of the samples, as the brittle, hard nature of the quasicrystalline phase would not allow for the ductile adhesion. The addition of small amounts of Al-Cu-Fe quasicrystalline particles, crushed and pulverized from the arc-melted ingots, reduced the coefficient of friction and wear rate of UHMWPE, when added to the polymer.
3

Etude des mécanismes de formation de phases dans des films minces du système ternaire Al-Cu-Fe

Haidara, Fanta 21 July 2011 (has links)
Les mécanismes de formation de phases dans des films minces du système ternaire Al-Cu-Fe et des systèmes binaires Al-Cu, Al-Fe et Cu-Fe ont été étudiés. Dans chacun des systèmes, plusieurs échantillons avec des compositions distinctes ont été préparés par pulvérisation cathodique. Des couches d’aluminium, de cuivre et de fer ont été déposées séquentiellement sur des substrats de silicium oxydé et ont été traités thermiquement par différentes méthodes puis caractérisés. Des mesures de diffraction de rayons X et de résistivité in-situ ont été effectuées pour suivre la formation des phases. Des recuits thermiques suivis de trempe ont été réalisés et les échantillons ont été caractérisés par diffraction des rayons X. L’analyse enthalpique différentielle a également été utilisée ainsi que des mesures simultanées in-situ de résistivité et de diffraction des rayons X. L’ensemble des résultats obtenus nous a permis de proposer des mécanismes de formation de phases pour chacun des échantillons étudiés et en utilisant des modèles théoriques de croissance de phases nous avons pu déterminer des données cinétiques sur la formation de phases dans ces films. / The mechanisms of phase formation in thin films have been studied in the Al-Cu, Al-Fe, Fe-Cu and Al-Cu-Fe systems. Several samples with different compositions have been prepared by sputtering. Aluminium, copper and iron layers were deposited onto oxidized silicon substrates, they were heat treated and characterized by using several techniques. In situ X-ray diffraction and resistivity measurements were used to follow the phase formation. Thermal annealings followed by quenching have also been carried out to get additional information.Differential Scanning Calorimetry and coupled in-situ resistivity and X-ray diffractionmeasurements were performed. The whole results allowed us to suggest a mechanism of phase formation for each sample and by using theoretical models of growth we determined kinetic data on the phase formation.
4

Mechanical milling of Al-Cu-Fe quasicrystals and their Reinforcement in Aluminum matrix composites

Ali, Fahad 29 March 2012 (has links)
In this thesis, the effect of mechanical deformation on structure, thermal stability and hardness of a single-phase spray-deposited quasicrystalline alloy with composition Al62.5Cu25Fe12.5 has been investigated in detail. The purpose of the investigation was to study the effect of mechanical milling at different milling speeds (which approximately scale with the milling intensity) on mechanically-induced phase transformations during milling and on the phase evolution during subsequent heating. The results of the milling experiments indicate that, irrespective of the milling speeds used, mechanical milling of Al62.5Cu25Fe12.5 quasicrystals leads to the formation of a disordered CsCl-type ß phase with grain size of about 10 – 20 nm. The analysis of the kinetics of the QC–to–ß phase transformation reveals that the milling intensity has a considerable effect on the characteristics of the transformation. The increase of the milling speed considerably shortens the incubation time needed to start the QC–to–ß phase transformation. Also, the overall transformation is much faster for milling at high speeds. The QC–to–ß phase transformation starts when the grain size of the quasicrystals is reduced to about 10 nm irrespective of the milling speed used and clearly indicates that a critical grain size of the quasicrystals for initiating the transformation exists. On the other hand, no critical value of lattice strain was found for the QC–to–ß transformation. This indicates that the phase transformation is controlled by the local length scale (i.e. the grain size) and by the corresponding grain boundaries rather than by the energy stored in the lattice. Energetic considerations obtained through a simple model based on the mass and velocity of the milling balls reveal that the energy needed for the QC–to–ß transformation increases with increasing the milling speed, that is, the energetic efficiency of the process decreases with increasing the milling intensity. This indicates that part the extra energy supplied during milling at high intensities is not used to induce the phase transformation but it is dissipated by heat. During heating, the milled powder displays a multi-step thermal behavior characterized by the grain growth of the disordered ß phase at low temperatures, followed, at higher temperatures, by its transformation into the original icosahedral quasicrystalline phase. The transformation is gradual and the quasicrystals and the disordered ß phase coexist over a temperature interval of more than 250 K. The phase transformations occurring during milling and subsequent annealing have a remarkable effect on the hardness, which can be tuned within a wide range of values (7–9.6 GPa) as a function of the volume fraction of the different phases. This suggests that a composite material with optimized mechanical properties can be produced by an appropriate thermo-mechanical treatment. The quasicrystals milled at a very low speed show a transition between Hall-Petch to inverse Hall-Petch behavior at a grain size of about 40 nm, which represents the critical value for grain size softening of the present Al62.5Cu25Fe12.5 quasicrystals. This behavior may be attributed to the complexity of the quasicrystalline structure and to its peculiar deformation mechanism at room temperature (i.e. shear banding), where meta-dislocation-assisted deformation is almost absent. In order to analyze the effectiveness of the Al62.5Cu25Fe12.5 quasicrystals as reinforcing agent in metal matrix composites, Al-based composites were synthesized by hot extrusion of elemental Al blended with different amounts of Al62.5Cu25Fe12.5 quasicrystalline particles. The work was focused on two specific aspects: evaluation of the mechanical properties through room temperature compression tests and modeling of the resulting properties. The addition of the quasicrystalline reinforcement is very effective for improving the room temperature mechanical properties of pure Al. The compressive strength increases from 155 MPa for pure Al to 330 and 407 MPa for the composites with 20 and 40 vol.% of reinforcement, respectively, reaching an ultimate strain of 55 % and 20 % before fracture occurs. These results indicate that the addition of the QC reinforcement leads to composite materials with compressive strengths exceeding that of pure Al by a factor of 2 – 2.5, while retaining appreciable plastic deformation. The mechanical properties of the composites have been modeled by taking into account the combined effect of load bearing, dislocation strengthening and matrix ligament size effects. The calculations are in very good agreement with the experimental results and reveal that the reduction of the matrix ligament size, which results in a similar strengthening effect as that observed for grain refinement, is the main strengthening mechanism in the current composites. Finally, the interfacial reaction between the Al matrix and the QC reinforcement has been used to further enhance the strength of the composites through the formation of a new microstructure consisting of the Al matrix reinforced with Al7Cu2Fe w-phase particles. The optimization of the structure-property relationship was done through the systematic variation of the processing temperature during consolidation. The mechanical behavior of these transformation-strengthened composites is remarkably improved compared to the parent material. The yield strength of the composites significantly increases as the Al + QC -> ω transformation progresses from 195 MPa for the sample reinforced only with QC particles to 400 MPa for the material where the Al + QC -> ω reaction is complete. These results clearly demonstrate that powder metallurgy, i.e. powder synthesis by ball milling followed by consolidation into bulk specimens, is an attractive processing route for the production of novel and innovative lightweight composites characterized by high strength combined with considerable plastic deformation. In addition, these findings indicate that the mechanical behavior of Al-based composites reinforced with Al62.5Cu25Fe12.5 quasicrystalline particles can be tuned within a wide range of strength and plasticity depending on the volume fraction of the reinforcement as well as on the extent of the interfacial reaction between Al matrix and QC reinforcing particles.
5

Structures atomiques des phases icosaédriques de type F et dislocations

Beauchesne, Jean-Tristan 28 March 2008 (has links) (PDF)
Cette thèse est consacrée à l'étude des structures atomiques des phases icosaédriques de type F et leurs dislocations.<br /><br />Dans cette étude nous avons d'abord construit une structure générique permettant de traiter dans un seul schéma les phases icosaédriques de type F connues. Afin de valider ce modèle nous avons synthétisé quelques compositions suggérées par ce dernier. Ces synthèses ont permis entre autres de découvrir deux nouvelles phases quasipériodiques à la stoechiométrie Al66,08Cu21,35Mn8,29Fe4,28 , l'une icosaédrique (métastable) de type F et l'autre décagonale (stable). Elles ont montré, à une composition au-delà de celles déjà étudiées dans le système (Al,Pd,Fe), l'existence d'une phase F-IQC.<br /><br /> Globalement, ces résultats expérimentaux d'études de nouvelles phases icosaédriques ont permis de montrer la fiabilité du modèle : sur les trois essais de nouvelles compositions, deux ont montré l'existence de phases icosaédriques de type F et la troisième a mis en évidence une phase décagonale en relation d'épitaxie canonique avec la phase icosaédrique brut métastable (axe 10 confondu avec un axe 5).<br /><br />Possédant un modèle fiable nous avons donc pu y introduire des dislocations. Nous avons ainsi précisé la géométrie des dislocations à l'échelle atomique, hors de la zone de cœur, dans les phases F-IQC. Dans cette structure nous avons aussi identifié les mouvements des phasons et tenté d'apporter des éléments de réponse aux mouvements de ces dislocations.
6

Influ?ncia da taxa de resfriamento na microestrutura da fase quasicristalina na liga Al65Cu35-xFex com baixo teor de Fe solidificada fora do equil?brio

Piedade, Luiz Alberto Silva da 18 August 2017 (has links)
Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2017-10-26T16:09:28Z No. of bitstreams: 1 Tese Eng. Piedade.pdf: 6225051 bytes, checksum: c7f77823a538300959734acada65a861 (MD5) / Rejected by Caroline Xavier (caroline.xavier@pucrs.br), reason: Devolvido devido a 1) Arquivo PDF sem capa institucional. 2) Na primeira e segunda folha do arquivo PDF, o nome do autor est? incompleto. Na ficha catalogr?fica e publica??o enviada est? completo. 3) Nome e descri??o do arquivo na publica??o est?o em desacordo com o manual enviado. on 2017-11-07T13:03:14Z (GMT) / Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2017-11-08T17:01:40Z No. of bitstreams: 1 final para entrega com capa.pdf: 6291908 bytes, checksum: a447082574d55fe4709b55f1c2da38fb (MD5) / Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-11-17T12:16:13Z (GMT) No. of bitstreams: 1 final para entrega com capa.pdf: 6291908 bytes, checksum: a447082574d55fe4709b55f1c2da38fb (MD5) / Made available in DSpace on 2017-11-17T12:20:52Z (GMT). No. of bitstreams: 1 final para entrega com capa.pdf: 6291908 bytes, checksum: a447082574d55fe4709b55f1c2da38fb (MD5) Previous issue date: 2017-08-18 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / Quasicrystals are materials that have unusual characteristics, they can not be described as crystalline, for not having long-range order, or as amorphous, have medium-range structure. Some Al-Cu-Fe family alloys presents quasicrystalline phases when have rapidly solidification. In order to obtain this alloy, ingots of the Al65Cu35-xFex family were casted with x=6 (atomic), initially in a standard mold with solidification equilibrium. To provide samples with different cooling rates, the alloy was cast in a stepped mold, containing six different steps, resulting in samples out of equilibrium state (rapidly solidification). For the analysis of the cooling curves, the CACC-TA technique was used, with cooling rates varying from170 to 540?C / s, which were obtained by dT/dt. Analyzes by optical microscopy, scanning electron microscopy (SEM), dispersive energy spectrometry (EDS), show microstructure with faceted dendrites, lamellar interdendritic formations and pentagonal precipitates (IQC). The Vickers microhardness ranged from 4.09 to 7.22 GPa and the X-ray diffraction (XRD) proved by characteristic diffractograms the icosahedral quasicrystalline phase formation. / Os quasicristais s?o materiais que apresentam caracter?sticas incomuns, pois n?o podem ser descritos como cristalinos, por n?o apresentarem ordem de longo alcance, nem como amorfos, apresentam estrutura de m?dio alcance. Algumas ligas da fam?lia Al-Cu-Fe apresentam fases quasicristalinas quando rapidamente solidificadas. Para obter-se esta liga, foram fundidos lingotes da fam?lia Al65Cu35-xFex com x=6 (at?mico), inicialmente em um molde padr?o com solidifica??o em estado de equil?brio. Para proporcionar amostras com taxas de resfriamento variadas, a liga foi vazada em um molde escalonado, contendo seis cavidades diferentes, resultando em amostras solidificadas fora do estado de equil?brio (solidifica??o r?pida). Para an?lise das curvas de resfriamento utilizou- se a t?cnica CACC-TA, com taxas de resfriamento variando entre 170 e 540?C/s, que foram obtidas por meio de dT/dt. An?lises por microscopia ?ptica, microscopia eletr?nica de varredura (MEV), espectrometria por energia dispersiva (EDS), mostram microestrutura com dendritas facetadas, forma??es interdendr?ticas lamelares e precipitados pentagonais (IQC). A microdureza Vickers variou entre 417 HV e 736 HV (4,09 e 7,22 GPa) e a difra??o de raios X (DRX) comprovou por meio de difratogramas caracter?sticos a forma??o de fase quasicristalina icosa?drica.
7

Étude des mécanismes de formation de phases dans des films minces du système ternaire Al-Cu-Fe

Haidara, Fanta 21 July 2011 (has links) (PDF)
Les mécanismes de formation de phases dans des films minces du système ternaire Al-Cu-Fe et des systèmes binaires Al-Cu, Al-Fe et Cu-Fe ont été étudiés. Dans chacun des systèmes, plusieurs échantillons avec des compositions distinctes ont été préparés par pulvérisation cathodique. Des couches d'aluminium, de cuivre et de fer ont été déposées séquentiellement sur des substrats de silicium oxydé et ont été traités thermiquement par différentes méthodes puis caractérisés. Des mesures de diffraction de rayons X et de résistivité in-situ ont été effectuées pour suivre la formation des phases. Des recuits thermiques suivis de trempe ont été réalisés et les échantillons ont été caractérisés par diffraction des rayons X. L'analyse enthalpique différentielle a également été utilisée ainsi que des mesures simultanées in-situ de résistivité et de diffraction des rayons X. L'ensemble des résultats obtenus nous a permis de proposer des mécanismes de formation de phases pour chacun des échantillons étudiés et en utilisant des modèles théoriques de croissance de phases nous avons pu déterminer des données cinétiques sur la formation de phases dans ces films.
8

Elektronische Transporteigenschaften von amorphem und quasikristallinem Al-Cu-Fe

Madel, Caroline 25 June 2000 (has links) (PDF)
Quasikristallines Al-Cu-Fe (i-Phase) wurde ueber den Weg der amorphen (a-) Phase in Form duenner Schichten hergestellt und ein Vergleich elektronischer Transporteigenschaften der isotropen a-Phase in verschiedenen Anlassstufen mit der schliesslich entstehenden fast isotropen i-Phase durchgefuehrt (Leitfaehigkeit, Magnetoleitfaehigkeit, Hall-Effekt und Thermokraft). Die Auswirkungen einer Hume-Rothery-Stabilisierung auf den elektronischen Transport standen dabei im Vordergrund. Es wurden in der i-Phase auch die Auswirkungen einer systematischen Aenderung des Fe-Gehalts untersucht. Die a-Phase und die i-Phase sind in vielen wichtigen Trends miteinander verwandt, z.B. ist die inverse Matthiesen-Regel sowohl in der a- als auch in der i-Phase gueltig. Thermokraft und Hall-Effekt, die sehr empfindlich auf Aenderungen der Bandstruktur sind, zeigen drastischere Aenderungen beim Uebergang amorph-quasikristallin. Die Aenderungen der Eigenschaften in der i-Phase als Funktion der Temperatur und des Fe-Gehalts koennen in einem Zweibandmodell quantitativ erfasst werden. Mit dem Konzept der Spektralleitfaehigkeit, in das im Prinzip das Zweibandmodell uebergeht, koennen die Eigenschaften sowohl der i-Phase als auch der a-Phase quantitativ beschrieben werden. In der a-Phase fuehrt dieses Konzept auf eine sich von der frisch praeparierten a-Phase durch Tempern bis hin zur i-Phase kontinuierlich aendernde Spektralleitfaehigkeit, die schon unmittelbar nach dem Aufdampfen durch ein breites und ein, diesem ueberlagertes, schmales Minimum beschrieben werden kann. Beim Tempern wird das schmale Minimum immer tiefer. Im Ortsraum wird insgesamt ein Szenario vorgeschlagen, das von sphaerischer Ordnung ausgeht, zu der schon in der frisch praeparierten a-Phase eine Winkel- und Abstandsordnung hinzukommt. Diese verstaerkt sich beim Tempern bis hin zur perfekt geordneten Struktur in der i-Phase. Das Verschwinden magnetischer Effekte und die damit verbundenen Aenderungen der Tieftemperatur-Leitfaehigkeit beim Tempern deuten ebenfalls auf eine sich bereits in der a-Phase vollziehende kontinuierliche Aenderung der lokalen Umgebung der Fe-Atome, deren Anordnung hauptsaechlich die elektronischen Transporteigenschaften bestimmt.
9

Elektronische Transporteigenschaften von amorphem und quasikristallinem Al-Cu-Fe

Madel, Caroline 23 June 2000 (has links)
Quasikristallines Al-Cu-Fe (i-Phase) wurde ueber den Weg der amorphen (a-) Phase in Form duenner Schichten hergestellt und ein Vergleich elektronischer Transporteigenschaften der isotropen a-Phase in verschiedenen Anlassstufen mit der schliesslich entstehenden fast isotropen i-Phase durchgefuehrt (Leitfaehigkeit, Magnetoleitfaehigkeit, Hall-Effekt und Thermokraft). Die Auswirkungen einer Hume-Rothery-Stabilisierung auf den elektronischen Transport standen dabei im Vordergrund. Es wurden in der i-Phase auch die Auswirkungen einer systematischen Aenderung des Fe-Gehalts untersucht. Die a-Phase und die i-Phase sind in vielen wichtigen Trends miteinander verwandt, z.B. ist die inverse Matthiesen-Regel sowohl in der a- als auch in der i-Phase gueltig. Thermokraft und Hall-Effekt, die sehr empfindlich auf Aenderungen der Bandstruktur sind, zeigen drastischere Aenderungen beim Uebergang amorph-quasikristallin. Die Aenderungen der Eigenschaften in der i-Phase als Funktion der Temperatur und des Fe-Gehalts koennen in einem Zweibandmodell quantitativ erfasst werden. Mit dem Konzept der Spektralleitfaehigkeit, in das im Prinzip das Zweibandmodell uebergeht, koennen die Eigenschaften sowohl der i-Phase als auch der a-Phase quantitativ beschrieben werden. In der a-Phase fuehrt dieses Konzept auf eine sich von der frisch praeparierten a-Phase durch Tempern bis hin zur i-Phase kontinuierlich aendernde Spektralleitfaehigkeit, die schon unmittelbar nach dem Aufdampfen durch ein breites und ein, diesem ueberlagertes, schmales Minimum beschrieben werden kann. Beim Tempern wird das schmale Minimum immer tiefer. Im Ortsraum wird insgesamt ein Szenario vorgeschlagen, das von sphaerischer Ordnung ausgeht, zu der schon in der frisch praeparierten a-Phase eine Winkel- und Abstandsordnung hinzukommt. Diese verstaerkt sich beim Tempern bis hin zur perfekt geordneten Struktur in der i-Phase. Das Verschwinden magnetischer Effekte und die damit verbundenen Aenderungen der Tieftemperatur-Leitfaehigkeit beim Tempern deuten ebenfalls auf eine sich bereits in der a-Phase vollziehende kontinuierliche Aenderung der lokalen Umgebung der Fe-Atome, deren Anordnung hauptsaechlich die elektronischen Transporteigenschaften bestimmt.
10

Surfaces et films minces d'alliages métalliques complexes / Surfaces and thin films of complex metallic alloys

Duguet, Thomas 28 September 2009 (has links)
Après un chapitre d’introduction à propos des alliages métalliques complexes et leurs surfaces, le manuscrit est divisé en deux parties distinctes. La première partie (Chap.II) porte sur la détermination structurale de la surface d’ordre 2 de la phase décagonale Al-Cu-Co par LEED et STM. Les conclusions de ce chapitre indiquent (i) que la surface observée expérimentalement correspond à des terminaisons denses et riches en l’élément de plus faible énergie de surface (Al) et (ii) que la phase serait stabilisée par le terme entropique de l’énergie libre de Helmotz. Dans la deuxième partie de la thèse (Chap.III, IV et V), on applique une approche originale de science des surfaces pour résoudre un problème applicatif : l’adhérence des revêtements quasicristallins sur les substrats métalliques. On propose d’insérer une couche d’accrochage entre le revêtement et le substrat. L’alliage ?-Al4Cu9 est un bon candidat pour réaliser cette interface car il possède des propriétés structurales et électroniques intermédiaires entre un métal et un quasicristal. On élabore donc par MBE des interfaces modèles par adsorption puis recuit de Cu sur le quasicristal i-Al-Cu-Fe, puis d’Al sur Cu(111). Les expériences de photoémission, STM et LEED, ainsi que les calculs de DFT, démontrent la faisabilité d’une interface cohérente entre l’alliage de surface ?-Al4Cu9 et le Cu d’une part, et entre ?-Al4Cu9 et le quasicristal, d’autre part. Ces résultats fondamentaux sont reproduits avec succès dans le domaine applicatif, par l’élaboration de revêtements de phase ? par pulvérisation cathodique magnétron (Chap.V) / After an introductive chapter on complex metallic alloys and surfaces, the thesis is divided into two distinct parts. The first part (Chap.II) concerns the structural determination of the 2-fold surface of d-Al-Cu-Co quasicrystal, by using LEED and STM. The results show (i) that the experimental terraces correspond to dense and Al-rich terminations -the element with the lowest surface energy- and (ii) that this decagonal phase could be entropically stabilized. In the second part of the manuscript (Chap.III, IV and V), we apply a surface science approach to solve a technological bottleneck: the adherence of quasicrystalline coatings on metallic substrates. We propose to grow a buffer layer that would accommodate the differences between the two materials. For that purpose, the ?-Al4Cu9 phase is a good candidate as it shares electronic and structural properties with both substrate and coating. Hence, we synthesize model interfaces by using MBE, first by adsorption and annealing of Cu on the 5-f surface of i-Al-Cu-Fe quasicrystal and then in the Al on Cu(111) system. Photoemission, STM and LEED experiments, along with DFT calculations show that a coherent interface can be grown between the ?-Al4Cu9 surface alloy and both the Cu and the quasicrystal. Those fundamental results are successfully reproduced in the real world, by growing similar interfaces using magnetron sputterring (Chap.V)

Page generated in 0.0193 seconds