• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation and optimisation of a two-stage/two-pass reverse osmosis system for improved removal of chlorophenol from wastewater

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal M. 03 February 2018 (has links)
Yes / Reverse osmosis (RO) has become a common method for treating wastewater and removing several harmful organic compounds because of its relative ease of use and reduced costs. Chlorophenol is a toxic compound for humans and can readily be found in the wastewater of a wide range of industries. Previous research in this area of work has already provided promising results in respect of the performance of an individual spiral wound RO process for removing chlorophenol from wastewater, but the associated removal rates have stayed stubbornly low. The literature has so far confirmed that the efficiency of eliminating chlorophenol from wastewater using a pilot-scale of an individual spiral wound RO process is around 83 %, compared to 97 % for dimethylphenol. This paper explores the potential of an alternative configuration of two-stage/two-pass RO process for improving such low chlorophenol rejection rates via simulation and optimisation. The operational optimisation carried out is enhanced by constraining the total recovery rate to a realistic value by varying the system operating parameters according to the allowable limits of the process. The results indicate that the proposed configuration has the potential to increase the rejection of chlorophenol by 12.4 % while achieving 40 % total water recovery at an energy consumption of 1.949 kWh/m³.
2

Performance evaluation of multi-stage reverse osmosis process with permeate and retentate recycling strategy for the removal of chlorophenol from wastewater

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal M. 11 October 2018 (has links)
Yes / Reverse Osmosis (RO) is one of the most widely used technologies for wastewater treatment for the removal of toxic impurities, such as phenol and phenolic compounds from industrial effluents. In this research, performance of multi-stage RO wastewater treatment system is evaluated for the removal of chlorophenol from wastewater using model-based techniques. A number of alternative configurations with recycling of permeate, retentate, and permeate-retentate streams are considered. The performance is measured in terms of total recovery rate, permeate product concentration, overall chlorophenol rejection and energy consumption and the effect of a number of operating parameters on the overall performance of the alternative configurations are evaluated. The results clearly show that the permeate recycling scheme at fixed plant feed flow rate can remarkably improve the final chlorophenol concentration of the product despite a reduction in the total recovery rate.
3

Performance evaluation of multi-stage and multi-pass reverse osmosis networks for the removal of N-nitrosodimethylamine-D6 (NDMA) from wastewater using model-based techniques

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal M. 06 June 2018 (has links)
Yes / The removal of pollutants such as N-nitrosamine present in drinking and reuse water resources is of significant interest for health and safety professionals. Reverse osmosis (RO) is one of the most promising and efficient methodologies for removing such harmful organic compounds from wastewater. Having said this, the literature confirms that the multi-stage RO process with retentate reprocessing design has not yet achieved an effective removal of N-nitrosodimethylamine-D6 (NDMA) from wastewater. This research emphasizes on this particular challenge and aims to explore several conceptual designs of multi-stage RO processes for NDMA rejection considering model-based techniques and compute the total recovery rate and energy consumption for different configurations of retentate reprocessing techniques. In this research, the permeate reprocessing design methodology is proposed to increase the process efficiency. An extensive simulation analysis is carried out using high NDMA concentration to evaluate the performance of each configuration under similar operational conditions, thus providing a deep insight on the performance of the multi-stage RO permeate reprocessing predictive design. Furthermore, an optimisation analysis is carried out on the final design to optimise the process with a high NDMA rejection performance and the practical recovery rate by manipulating the operating conditions of the plant within specified constraints bounds. The results show a superior removal of NDMA from wastewater.
4

Modelling and optimisation of a multistage Reverse Osmosis processes with permeate reprocessing and recycling for the removal of N-nitrosodimethylamine from wastewater using Species Conserving Genetic Algorithms

Al-Obaidi, Mudhar A.A.R., Li, Jian-Ping, Alsadaie, S.M., Kara-Zaitri, Chakib, Mujtaba, Iqbal M. 06 June 2018 (has links)
Yes / The need for desalinated seawater and reclaimed wastewater is increasing rapidly with the rising demands for drinkable water required for the world with continuously growing population. Reverse Osmosis (RO) processes are now among the most promising technologies used to remove chemicals from industrial effluents. N-nitrosamine compounds and especially N-nitrosodimethylamine (NDMA) are human carcinogens and can be found in industrial effluents of many industries. Particularly, NDMA is one of the by-products of disinfection process of secondary-treated wastewater effluent with chloramines, chlorines, and ozone (inhibitors). However, multi-stage RO processes with permeate reprocessing and recycling has not yet been considered for the removal of N-nitrosodimethylamine from wastewater. This research therefore, begins by investigating a number of multi-stage RO processes with permeate-reprocessing to remove N-nitrosodimethylamine (NDMA) from wastewater and finds the best configuration in terms of rejection, recovery and energy consumption via optimisation. For the first time we have applied Species Conserving Genetic Algorithm (SCGA) in optimising RO process conditions for wastewater treatment. Finally, permeate recycling is added to the best configuration and its performance is evaluated as a function of the amount of permeate being recycled via simulation. For this purpose, a mathematical model is developed based on the solution diffusion model, which is used for both optimisation and simulation. A number of model parameters have been estimated using experimental data of Fujioka et al. (Journal of Membrane Science 454 (2014) 212–219), so that the model can be used for simulation and optimisation with high accuracy and confidence.

Page generated in 0.0872 seconds