• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 34
  • 20
  • 12
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • Tagged with
  • 214
  • 214
  • 58
  • 44
  • 37
  • 32
  • 32
  • 23
  • 22
  • 19
  • 18
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Multidrug transporters : a study of drug interactions using a photoactive analogue of rhodamine 123

Alqawi, Omar January 2003 (has links)
The emergence of multidrug resistance is a serious medical problem that has significantly affected the treatment of tumor cells and infectious diseases. This multidrug resistance phenotype is mediated by the action of a large family of membrane proteins that act as active transporters or energy driven efflux pumps in both of prokaryotic and eukaryotic cells. Most eukaryotic multidrug efflux pumps belong to the ATP binding cassette (ABC) family of transport proteins that include P-glycoprotein (P-gp1), Multidrug Resistance Associated Protein (MRP1), and Breast Cancer Resistance Protein (BCRP). In prokaryotic cells, Lactococcus lactis LmrA, a homolog of P-gp1, mediates drug resistance to antibiotics and cytotoxic drugs. The transport function of these proteins is facilitated by the hydrolysis of ATP. However, the mechanism by which these proteins bind to, and are able to transport structurally dissimilar drugs across the cell membrane remains poorly understood. In this thesis we have attempted to characterize the interactions of various ABC transporters (MRP1, BCRP, and LmrA) with structurally diverse drugs, using a well characterized photoreactive drug analogue of Rhodamine 123, [125I] iodoaryl azido-rhodamine 123 (IAARh123). In the case of MRP1 interaction with Rhodamine 123, it was of interest to determine the nature of MRP1 drug interactions. In that study, our results show that CHAPS (1-[(3-cholamidopropyl) dimethylamino]-1-propansulfate) and Brij35 inhibited the photolabeling of MRP1 with IAARh123, and this interaction occurred outside the lipid bilayer. These results were unexpected in light of previous results with another ABC transporter which also binds to Rhodamine 123. Consequently, we show that non-toxic concentrations of CHAPS and Brij35 potentiate the toxicity of two MRP1 substrates, vincristine and etoposide (VP16). In the second chapter, we have used IAARh123 to demonstrate for the first time that the BCRP mediates drug resi
82

Characterizing drug interactions in the substrate binding pocket of the P-glycoprotein multidrug efflux pump

Ward, David 02 February 2012 (has links)
P-glycoprotein (Pgp, ABCB1) is a polyspecific efflux transporter implicated in multidrug resistance in human cancers. In this study, tetramethylrhodamine-5-carbonyl azide (AzTMR) was covalently crosslinked to the Pgp drug binding pocket with a stoichiometry of 1. The Pgp-AzTMR adduct was functionally equivalent to unlabelled Pgp and retained its ability to transport Hoechst 33342. The binding site of AzTMR in Pgp was nonpolar, with a similar environment to that of propanol. Pgp-AzTMR could bind a second drug molecule, with a higher affinity for H-site drugs and lower affinity for other R-site drugs. Unlabelled Pgp interacted with dimeric versions of known Pgp modulators, binding them with higher affinity than the monomer. These compounds were also found to either stimulate or inhibit Pgp ATPase activity depending on the concentration. Pgp-AzTMR was able to bind dimeric drugs, indicating that 3 substrate moieties can fit into the binding pocket. / The Canadian Cancer Society
83

Pharmacological effects of quinoline-related compounds in human tumour cells overexpressing the multidrug resistance protein (MRP)

Vezmar, Marko. January 1997 (has links)
The emergence of multidrug resistant tumours during the course of chemotherapeutic treatment of cancer patients is a major obstacle in cancer chemotherapy. Although several mechanisms may contribute to the appearance of multidrug resistance phenotype (MDR) in tumour cells, reduced drug accumulation and the ability of cells to undergo apoptosis are thought to be very important in expression of MDR. The work in this thesis focuses on the mechanism responsible for the reduced drug accumulation in tumour cells, mainly the multidrug resistance protein (MRP1). / The molecular mechanism underlying the binding and efflux of drugs by the MRP1 is currently not well understood. Several studies have now demonstrated that the cysteinyl leukotriene C$ sb4$ (LTC$ sb4$) and other glutathione (GSH) S-conjugated anions are substrates for the MRP. To learn more about MRP-drug interactions, we characterized the binding of MRP to a non-glutathione photoactive quinoline compound (abbreviated, ASA-AQ) (Chapter II). Since MRP mediated multi-drug resistance can be modulated by the anionic quinoline LTD$ sb4$ cysteinyl leukotriene receptor antagonist (MK571), we speculated that other quinoline-based compounds are likely to interact with MRP. In Chapter III, we show that MDR cells that express MRP1 are more resistant to the antimalarial drug, chloroquine. We also show that. chloroquine is a substrate for MRP1 drug efflux. / Taken together, the results of this thesis describe the interactions of MRP1 with a quinoline-based photoactive drug and the antimalarial drug chloroquine.
84

Rapid prediction of multi-drug resistance in clinical specimens of Mycobacterium tuberculosis.

Ndimande, Bongiwe Olga. January 2011 (has links)
Conventional drug susceptibility testing techniques, the ‘gold standard’ for M. tuberculosis are slow, requiring about 3-6 weeks from a positive culture. This diagnostic delay, before initiation of appropriate treatment, contributes to increased transmission rates. Molecular techniques provide rapid results and therefore present an alternative to conventional tests. The aim of this project was to develop an inhouse reverse line blot hybridization assay (RIFO assay) that could detect mutations associated with Rifampicin resistance directly in clinical specimens of patients in KwaZulu Natal. A 437 bp region of the rpoB gene was sequenced to ascertain the most frequently occurring mutations conferring resistance to rifampicin in isolates in KwaZulu-Natal. Wildtype and mutant probes designed to target these mutations, were immobilized on a Biodyne C membrane. Hybridization conditions were optimized using biotin labeled PCR products from culture. Detection was performed with peroxidase labeled streptavidin using enhanced chemiluminescence. Four DNA extraction methods were evaluated on sputum specimens to determine the one with the least inhibitory effect on amplification. A total of 11 mutations were found in 236 clinical isolates: 531TTG (109, 58.3%), 516GTC (26, 13%), 533CCG/516GGC (20, 10%), 533CCG (18, 9.6%), other mutations < 5% each. The chelex extraction method was found to be optimal for removing inhibitors in sputum specimens. Sputum specimens of 404 patients hospitalized at King George V Hospital between 2005 and 2006 were rifoligotyped. The RIFO assay was optimised on clinical isolates and then applied to sputum specimens. The RIFO assay on culture and sputum correlated well with the DST (sensitivity 92% and 94% respectively). However, the specificity was very low in both culture and sputum specimens compared to DST (38% and 35% respectively). This could be attributed to the presence of silent mutations, mixed infections, mixed populations of bacteria or the small number of susceptible strains used in this study. The in-house RIFO assay can be used directly on sputum specimens to predict Rifampicin resistance and therefore MDR-TB in less than a week compared to the gold standards. A total of 43 samples can be tested simultaneously at low cost and the membrane is reusable compared to commercial kits such as the Hains test that is expensive and strips are not reusable. A similar assay can be designed to target mutations for the detection of XDR-TB. Future studies should be conducted in a clinical setting on patients with sensitive strains to increase the specificity. / Thesis (M.Med.)-University of KwaZulu-Natal, Durban, 2011.
85

Spread of multi drug resistant tuberculosis (MDR) including extensively drug resistant turberculosis (XDR TB), in rural KwaZulu-Natal.

Ramtahal, Melissa Afton. January 2011 (has links)
Mycobacterium tuberculosis (MTB) is an airborne pathogen that is easily transmitted from person to person. An intact immune system prevents the organism from causing disease in most individuals. In South Africa, the prevalence of human immunodeficiency virus (HIV) has reached astronomical levels and is now fuelling the tuberculosis (TB) epidemic. Drug resistant MTB strains combined with a weakened host immune system is a lethal combination. Multi-drug resistant (MDR) including extensively drug resistant (XDR) tuberculosis is on the increase, with Tugela Ferry in KwaZulu-Natal South Africa, reporting the largest cluster of XDR cases in the world. It is unknown whether a single clone of the drug resistant strain is circulating in this area or whether there are multiple strains at play. Using 2 complementary genotyping methods, we showed that the MDR strains present are the result of clonal spread associated with the F28 family, as well as de novo resistance which manifests as unique patterns. The XDR epidemic in Tugela Ferry is the result of clonal spread of a strain belonging to the F15/LAM4/KZN family. / Thesis (M.Med.)-University of KwaZulu-Natal, Durban, 2011.
86

STABILITY STUDIES OF MEMBRANE PROTEINS

Ye, Cui 01 January 2014 (has links)
The World Health Organization has identified antimicrobial resistance as one of the top three threats to human health. Gram-negative bacteria such as Escherichia coli are intrinsically more resistant to antimicrobials. There are very few drugs either on the market or in the pharmaceutical pipeline targeting Gram-negative pathogens. Two mechanisms, the protection of the outer membrane and the active efflux by the multidrug transporters, play important roles in conferring multidrug resistance to Gram-negative bacteria. My work focuses on two main directions, each aligning with one of the known multidrug resistance mechanisms. The first direction of my research is in the area of the biogenesis of the bacterial outer membrane. The outer membrane serves as a permeability barrier in Gram-negative bacteria. Antibiotics cross the membrane barrier mainly via diffusion into the lipid bilayer or channels formed by outer membrane proteins. Therefore, bacterial drug resistance is closely correlated with the integrity of the outer membrane, which depends on the correct folding of the outer membrane proteins. The folding of the outer membrane proteins has been studied extensively in dilute buffer solution. However, the cell periplasm, where the folding actually occurs, is a crowded environment. In Chapter 2, effects of the macromolecular crowding on the folding mechanisms of two bacterial outer membrane proteins (OmpA and OmpT) were examined. Our results suggested that the periplasmic domain of OmpA improved the efficiency of the OmpA maturation under the crowding condition, while refolding of OmpT was barely affected by the crowding. The second direction of my research focuses on the major multidrug efflux transporter in Gram-negative bacteria, AcrB. AcrB is an obligate trimer, which exists and functions exclusively in a trimeric state. In Chapter 3, the unfolding of the AcrB trimer was investigated. Our results revealed that sodium dodecyl sulfate induced unfolding of the trimeric AcrB started with a local structural rearrangement. While the refolding of secondary structure in individual monomers could be achieved, the re-association of the trimer might be the limiting factor to obtain folded wild type AcrB. In Chapter 4, the correlation between the AcrB trimer stability and the transporter activity was studied. A non-linear correlation was observed, in which the threshold trimer stability was required to maintain the efflux activity. Finally, in Chapter 5, the stability of another inner membrane protein, AqpZ, was studied. AqpZ was remarkably stable. Several molecular engineering approaches were tested to improve the thermal stability of the protein.
87

Abolishing multidrug resistance in cultured lung cancer cells with RNA interference

Prajapati, Kamal 24 July 2010 (has links)
The gene, cox-1, is over-expressed in cultured GLC4 small cell lung cancer cells concurrent with the development of multi-drug resistance (MDR) as a result of the use of the chemotherapeutic agent used to combat the cancer, doxorubicin. Prevention of MDR has been a tremendous challenge in cancer research and this research is concerned with abolishment of MDR as a cancer survival strategy. RNA-mediated interference technology (RNAi) was employed using siRNA to decrease cox-1 expression and temporarily restore the susceptibility of the cells to doxorubicin. GLC4 cells are of three types: S (sensitive cells never exposed to doxorubicin); ADR (MDR cells cultured in doxorubicin), and; REV (revertant cells previously cultured in presence of doxorubicin but no longer). REV and ADR cells were transfected with cox-1 siRNA. After 24 h, 1x106cells were used for RNA isolation and 1 μg of RNA was used for RT-PCR to assess down-regulation of cox-1 RNA. RT-PCR results indicated that cox-1 RNA was down-regulated to basal levels seen before exposure to doxorubicin. Ct values for GLC4/ADR and cox-1 down-regulated GLC4/ADR cells were 23 and 34, respectively. The result indicated abundant levels and moderate levels of cox-1 mRNA in the ADR cells and the transfected ADR cells respectively. The relative expression level of cox-1 mRNA was 33% higher in the non-transfected GLCR/ADR cells as compared to the transfected GLCR/ADR cells as shown by the curve. Two hundred thousand cells were used for hemacytometer cell counts in the presence of trypan blue to assess cell viability. cox-1 down-regulation in ADR cells resulted in a significantly higher percentage of non-viable cells (25.4%) as compared to its non-transfected control (20.5%) using a Student’s t-test (*P <0.05). Similarly, fluorescence microscopy confirmed that apoptosis was significantly increased in the ADR cells treated with doxorubicin and cox-1 siRNA simultaneously (69.4%) as compared to its non-transfected control (56.7%) (*= P <0.01). A Western blot analysis performed by Fernando Cuadrado indicated that siRNA transfection decreased the expression of COX-1 by 66% in GLC4/ ADR cells as compared to the non-transfected control using densitometry. However, no conclusive results were obtained using flow cytometry as the flow cytometer was incapable of analyzing the mixed cell population (adherent and suspension) which is a characteristic of this cell line, GLC4. Thus, we have clearly demonstrated that MDR cancer cells can be altered temporarily to become susceptible to doxorubicin, a potentially important finding for the treatment of cancer patients. / Department of Biology
88

The Regulation of Multidrug Resistance Phosphoglycoprotein (MDR1/P-gp) and Breast Cancer Resistance Protein (BCRP) in the Human Placenta

Rainey, Jenna 04 May 2011 (has links)
Multidrug resistance phosphoglycoprotein (MDR1/P-gp) and breast cancer resistance protein (BCRP) were first isolated in chemoresistant cancer cells and have since been found in a variety of normal tissue, including the placenta. The potential function of MDR1/P-gp and BCRP in the human placenta is to protect the fetus from maternally circulating endogenous steroids and hormones, therapeutic drugs and toxins. The objective of this study was to examine the role of maternal steroids in the regulation of MDR1/P-gp and BCRP in the human placenta. Trophoblast cells were isolated from term placenta tissues and immunohistochemistry, western blot analysis and transport studies were used to determine the effect of maternal steroids on MDR1/P-gp and BCRP regulation. Maternal steroids, present at high concentrations in maternal serum, did not have an effect on BCRP in human syncytiotrophoblast. Estrogen and progesterone did not alter MDR1/P-gp levels in human syncytiotrophoblast, but cortisol significantly decreased MDR1/P-gp levels.
89

A Novel Lipid-based Nanotechnology Platform For Biomedical Imaging And Breast Cancer Chemotherapy

Shuhendler, Adam Jason 15 August 2013 (has links)
A novel, lipid-based platform nanotechnology has been designed to overcome limitations of in vivo fluorescent imaging, multidrug resistance (MDR) phenotypes hindering breast cancer chemotherapy, and shortcomings of magnetic resonance imaging (MRI) thermometry. Using this platform, three nanoparticle systems have been developed: QD-SLN (quantum dot-loaded solid lipid nanoparticles), DMsPLN (doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles), and HLN (hydrogel-lipid hybrid nanoparticles). Stealth, near-infrared emitting QD-SLN were developed for deep tissue fluorescence imaging, which were capable of extending the depth of penetration beyond 2 cm, with near complete probe clearance and good tolerability in vivo. The QD-SLN was used to evaluate the biodistribution of non-targeted SLN and actively targeted RGD-conjugated SLN. Non-targeted SLN accumulated in breast tumors and evaded liver uptake. The RGD-SLN showed prolonged retention in breast tumor neovasculature at the cost of lesser tumor accumulation due to enhanced liver uptake. With this information, a long circulating, non-targeted DMsPLN with a synergistic cancer chemotherapeutic combination of doxorubicin and mitomycin C was formulated to overcome MDR, enhancing breast cancer chemotherapy. Extensive tumor cell uptake and perinuclear trafficking of DMsPLN overcame the MDR phenotype of breast tumor cells in vitro. The DMsPLN provided the most efficacious chemotherapy reported in literature against aggressive mouse mammary tumors in vivo with significant reduction in whole animal and cardiotoxicity as compared to clinically applied liposomal doxorubicin. In establishing our tumor models, the impact of Matrigel™ on the tumor microenvironment was investigated, demonstrating altered tumor vascular and lymphatic anatomy and physiology, and significantly impacting nanomedicines assessment in mouse models of cancer. In all in vivo studies, tumors were established without use of Matrigel™. To guide thermotherapy of solid tumors, a novel HLN was formulated for use in MRI thermometry, presenting the first contrast agent capable of indicating a tunable, absolute two-point temperature window. In using specific limitations of therapeutic and imaging modalities to inform rational nanoparticle design, this lipid-based platform nanotechnology has extended the application of fluorescence imaging in vivo, enhanced the utility of nanoparticulate chemotherapeutics against breast cancer independent of MDR status, and provided novel functionality for MRI thermometry.
90

A Novel Lipid-based Nanotechnology Platform For Biomedical Imaging And Breast Cancer Chemotherapy

Shuhendler, Adam Jason 15 August 2013 (has links)
A novel, lipid-based platform nanotechnology has been designed to overcome limitations of in vivo fluorescent imaging, multidrug resistance (MDR) phenotypes hindering breast cancer chemotherapy, and shortcomings of magnetic resonance imaging (MRI) thermometry. Using this platform, three nanoparticle systems have been developed: QD-SLN (quantum dot-loaded solid lipid nanoparticles), DMsPLN (doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles), and HLN (hydrogel-lipid hybrid nanoparticles). Stealth, near-infrared emitting QD-SLN were developed for deep tissue fluorescence imaging, which were capable of extending the depth of penetration beyond 2 cm, with near complete probe clearance and good tolerability in vivo. The QD-SLN was used to evaluate the biodistribution of non-targeted SLN and actively targeted RGD-conjugated SLN. Non-targeted SLN accumulated in breast tumors and evaded liver uptake. The RGD-SLN showed prolonged retention in breast tumor neovasculature at the cost of lesser tumor accumulation due to enhanced liver uptake. With this information, a long circulating, non-targeted DMsPLN with a synergistic cancer chemotherapeutic combination of doxorubicin and mitomycin C was formulated to overcome MDR, enhancing breast cancer chemotherapy. Extensive tumor cell uptake and perinuclear trafficking of DMsPLN overcame the MDR phenotype of breast tumor cells in vitro. The DMsPLN provided the most efficacious chemotherapy reported in literature against aggressive mouse mammary tumors in vivo with significant reduction in whole animal and cardiotoxicity as compared to clinically applied liposomal doxorubicin. In establishing our tumor models, the impact of Matrigel™ on the tumor microenvironment was investigated, demonstrating altered tumor vascular and lymphatic anatomy and physiology, and significantly impacting nanomedicines assessment in mouse models of cancer. In all in vivo studies, tumors were established without use of Matrigel™. To guide thermotherapy of solid tumors, a novel HLN was formulated for use in MRI thermometry, presenting the first contrast agent capable of indicating a tunable, absolute two-point temperature window. In using specific limitations of therapeutic and imaging modalities to inform rational nanoparticle design, this lipid-based platform nanotechnology has extended the application of fluorescence imaging in vivo, enhanced the utility of nanoparticulate chemotherapeutics against breast cancer independent of MDR status, and provided novel functionality for MRI thermometry.

Page generated in 0.049 seconds