• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 2
  • Tagged with
  • 19
  • 19
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of the multibody simulation with Adams

El Dsoki, Tarik 01 July 2015 (has links)
Die Mehrkörpersimulation (MKS) kommt in immer mehr Bereichen zum Einsatz. Bis vor einigen Jahren war das Thema fast ausschließlich im Automobilbereich wichtig. Heute wird der Ansatz in fast allen Bereichen der Technik, in dem „Bewegungsabläufe“ eine Rolle spielen, eingesetzt. Im Gegensatz zur Finite Elemente (FE)-Methode, für die eine detaillierte Bauteiltopologie mit einer Vielzahl von Elementen nötig ist, können mit MKS-Systemen selbst komplexe mechanische Systeme mit einer relativ geringen Anzahl an Freiheitsgraden abgebildet werden. Das Programm Adams hat diese Entwicklung maßgeblich mit gestaltet. Neben den Erweiterungen im Bereich der Solver und anderer mathematischer Formulierungen war immer die einfache Benutzerführung, die Integration von weiteren Simulationstechnologien und auch die Entwicklung von Spezialanwendungen ein wichtiges Thema der Entwicklung. Im Rahmen dieses Vortrages wird der Einsatz von Adams an Hand von Beispielen demonstriert. Weiterer Schwerpunkt ist die Erweiterung der Modelle durch Berücksichtigung der elastischen Materialeigenschaften einzelner Bauteile. Die Kopplung zur Lebensdauerberechnung an Hand von Beispielen schließt den Beitrag ab.
12

Multibody simulations of vibrations in a truck’s steering system / Flerkroppssimuleringar av vibrationer i en lastbils styrsystem

Didenbäck, Marcus January 2023 (has links)
This thesis aims to explore if multibody simulations is a suitable method to investigate vibrations in the steering system of trucks. Vibrations in the steering system and subsequently in the steering wheel is a common issue that automotive manufacturers face. The vibration levels in the steering wheel are in some countries regulated and some vibration phenomena can even cause issues with the handling properties of the whole vehicle. Therefore being able to predict and reduce these with the help of multibody simulations would be of great value. The thesis does this by comparing the simulations to measurements. It investigates what parts can be approximated as rigid, what the effects different numerical solvers have and compares different driving scenarios. This can however be quite challenging, one reason being that the differential equations arising when performing multibody simulations of trucks are very stiff. The numerical challenges of this must be overcome while still keeping the resolution of the accelerations in the solution high enough to still be representative of reality. The thesis also explains how to mathematically model a physical system such that the numerical analysis of it can be efficient. The results show that the success of multibody simulations is very dependent on the test case. However, they also show that together with physical measurements multibody simulations can be a powerful complementary tool. The thesis also presents improvements that could be made to the model as well as certain key areas that need to be studied more in order to align the multibody simulations results with measurements. The multibody simulations software used to perform the calculations and the modelling in the report is Adams developed by Hexagon AB. / Den här rapporten syftar till att ge inblick i om flerkroppssimuleringar kan vara ett användbart verktyg för att undersöka styrsystemsvibrationer i lastbilar. Dessa vibrationer är orsaken till en mängd styrningsproblem samt att rattvibrationer har lagkrav att inte vara för stora. Att kunna förutspå och efterlikna dessa vibrationer med flerkroppssimulering skulle därmed vara till stor fördel. Detta undersöks genom att jämföra simuleringarna med mätdata. Det undersöks vilken påverkan stelkroppsapproximationer av vissa komponenter har, påverkan av olika numeriska integrationmetoder samt steglängder och även olika körningslastfall. Att genomföra flerkroppssimuleringar av lastbilar är dock inte alltid helt enkelt, på grund av differentialekvationernas styva karaktär uppstår ofta konvergensproblem. Ska man sedan använda resultaten för att undersöka styrsystemsvibrationer måste man överkomma dessa konvergensproblem men bibehålla en tillräckligt fin upplösning av resultatet för att resultatet fortfarande ska vara representativt av den fysiska lastbilens dynamiska egenskaper. Rapporten beskriver även hur man kan gå tillväga för att matematiskt modellera ett fysisk system så att det effektivt går att utföra dynamisk analys av det. Resultaten visar att flerkroppssimulering kan vara väldigt beroende på vad körfallet är, med vissa körfall där simuleringar och mätningar stämmer väl överens och andra där detta inte är fallet. På grund av detta kan det vara otillräckligt att endast använda flerkroppssimulering för att utvärdera styrsystemsvibrationer, men resultaten visar att tillsammans med mätdata kan flerkroppssimulering vara ett kraftfullt komplement. I rapporten presenteras även exempel av viktiga komponenter att ta hänsyn till för att bättre kunna simulera styrsystemsvibrationer samt områden där mer forskning har potential att förbättra flerkroppssimuleringar i hänsyn till styrsystemsvibrationer. Mjukvaran som används för att utföra flerkroppssimulering är Adams som utvecklas av Hexagon AB.
13

Commissioning new applications on processing machines: Part I - process modelling

Troll, Clemens, Schebitz, Benno, Majschak, Jens-Peter, Döring, Michael, Holowenko, Olaf, Ihlenfeldt, Steffen 08 June 2018 (has links) (PDF)
The subject of this splitted article is the commissioning of a new application that may be part of a processing machine. Considering the example of the intermittent transport of small-sized goods, for example, chocolate bars, ideas for increasing the maximum performance are discussed. Starting from an analysis, disadvantages of a conventional motion approach are discussed, and thus, a new motion approach is presented. For realising this new motion approach, a virtual process model has to be built, which is the subject of this article. Therefore, the real process has to be abstracted, so only the main elements take attention in the modelling process. Following, important model parameters are determined and verified using virtual experiments. This finally leads to the possibility to calculate useful operating speed–dependent trajectories using the process model.
14

Commissioning new applications on processing machines: Part I - process modelling

Troll, Clemens, Schebitz, Benno, Majschak, Jens-Peter, Döring, Michael, Holowenko, Olaf, Ihlenfeldt, Steffen 08 June 2018 (has links)
The subject of this splitted article is the commissioning of a new application that may be part of a processing machine. Considering the example of the intermittent transport of small-sized goods, for example, chocolate bars, ideas for increasing the maximum performance are discussed. Starting from an analysis, disadvantages of a conventional motion approach are discussed, and thus, a new motion approach is presented. For realising this new motion approach, a virtual process model has to be built, which is the subject of this article. Therefore, the real process has to be abstracted, so only the main elements take attention in the modelling process. Following, important model parameters are determined and verified using virtual experiments. This finally leads to the possibility to calculate useful operating speed–dependent trajectories using the process model.
15

Analýza řadicího mechanizmu traktoru / Tractor Shift Mechanism Analysis

Netopil, Jan January 2021 (has links)
The thesis focuses on the shifting mechanisms of manually shifted tractor transmissions. It provides a comprehensive overview of all significant structural nodes of the shift mechanism with an analysis of the influence of the structure on the resulting intensity of a force required for shifting. The main aim of this thesis is the design and validation of experimental equipment for measuring the force effects of the shift mechanism of a mass-produced tractor in actual operation. The design of the experimental equipment is based on a study of the used measuring technique and similar experimental equipment. The final structure is selected based on selection by the method of weighted values, taking into consideration the requirements of the structure. A functional measuring chain is designed and formed for the realization of the measurement. To evaluate the data from the technical experiment, a multibody model of the designed experimental device is created in the MSC Adams View software, through which the real parameters of the shift mechanism are obtained from the measured values. The designed experimental equipment brings the possibility of complete analysis and subsequent optimization of the tractor's shift mechanism
16

Raupenfahrzeug-Dynamik

Graneß, Henry 27 March 2018 (has links)
Bei Raupenfahrwerken wird das allgemeingültige Prinzip verfolgt, dass durch die scharnierbare Aneinanderreihung von Kettengliedern eine fahrzeugeigene Fahrstrecke entsteht. Dies erlaubt selbst schwere Geräte im unwegsamen, brüchigen Gelände mit großen Vortriebskräften zu mobilisieren. Jedoch wohnt, der Diskretisierung des Raupenbandes in Glieder endlicher Länge geschuldet, dem Fahrwerk eine hohe Fahrunruhe inne. Dadurch entstehen zeitvariante Lasten im Fahrwerk, welche die Lebensdauer der Kette, des Fahrwerkantriebs und der Tragstruktur des Fahrzeugs limitieren und somit regelmäßig kostenintensive Instandsetzungsmaßnahmen erzwingen. Diese Problemstellung aufgreifend beschäftigt sich die Arbeit mit der Analyse und Optimierung des fahrdynamischen Verhaltens von Raupenfahrzeugen. Zugleich werden Methoden vorgestellt, welche eine rechenzeiteffiziente Simulation von Raupenfahrzeugen und Antriebssystemen zulassen.:Inhaltsverzeichnis V Symbolverzeichnis VIII Abkürzungsverzeichnis XII 1 Einleitung 1 1.1 Eigenschaften und Anwendungsbereiche von Raupenfahrwerken 1 1.2 Problemstellung 2 1.3 Gesamtaufbau Bagger 293 4 1.4 Raupenfahrwerk Bagger 293 5 1.5 Raupenfahrwerk – Fahrschiff 6 1.6 Präzisierte Aufgabenstellung 7 2 Grundlagen und Stand der Technik 11 2.1 Grundlagen zur Fahrunruhe von Raupenfahrwerken 11 2.1.1 Allgemeine Einteilung der Fahrunruhe 11 2.1.2 Innere Fahrwiderstände 12 2.1.3 Äußere Fahrwiderstände 18 2.1.4 Kettenvorspannung 19 2.2 Arbeiten zur Beschreibung der Fahrunruhe von Raupenfahrwerken 20 2.3 Ganzheitliche Analyse von Raupenfahrzeugen 22 2.3.1 Ganzheitliche Systembetrachtung 22 2.3.2 Beiträge zur ganzheitlichen Raupenfahrzeuganalyse 22 3 Detaillierte Modellfindung von Raupenfahrzeugkomponenten 26 3.1 Hintergrund 26 3.2 Elektrisch-Regelungstechnisches System 27 3.2.1 Regelungsprinzip für das einzelne Fahrschiff 27 3.2.2 Regelungsprinzip für das gesamte Fahrwerk 27 3.2.3 PI-Drehzahlregelung 29 3.2.4 P-Drehzahldifferenzregelung 30 3.2.5 Lenkwinkelkorrektur 31 3.2.6 Asynchronmaschine 33 3.2.7 Feldorientierte Regelung 37 3.2.8 Frequenzumrichter 40 3.2.9 Simulation und Analyse des Einzelraupenmodells der Regelung 41 3.3 Fahrwerksmodell 43 3.3.1 Modellbildung und Topologie 43 3.3.2 Fahrsimulation ohne Schakentäler 46 3.3.3 Fahrsimulation mit Schakentälern 51 3.3.4 Fahrsimulation Hangfahrt mit Schakentälern 54 3.3.5 Fahrsimulation Kurvenfahrt mit Schakentälern 56 3.3.6 Sensitivität des Fahrverhaltens 59 3.3.7 Fazit zur Fahrdynamik eines Fahrschiffes 63 3.4 Mechanisches System – Getriebe 63 3.4.1 Modellbildung und Topologie 63 3.4.2 Simulation mit synthetischem Lastfall 67 3.5 Mechanisches System – Unterwagen und Oberbau 69 3.5.1 Modellbildung 69 3.5.2 Simulation im Frequenzbereich 71 4 Rechenzeiteffiziente Ersatzmodelle von Raupenfahrzeugkomponenten 72 4.1 Hintergrund 72 4.2 Elektrisch-Regelungstechnisches System 72 4.2.1 Methodik 72 4.2.2 Simulation und Bewertung 73 4.3 Fahrwerksmodell 74 4.3.1 Methodik 74 4.3.2 Simulation und Bewertung ohne Schakentäler 87 4.3.3 Simulation und Bewertung mit Schakentälern 90 4.4 Getriebemodell 92 4.4.1 Methodik 92 4.4.2 Simulation und Bewertung 96 4.5 Unterwagen- und Oberbaumodell 98 4.5.1 Methodik 98 4.5.2 Simulation und Bewertung 99 5 Ganzheitliche Fahrdynamik-Simulation und Messdatenabgleich 101 5.1 Modellstufen 101 5.1.1 Rheonom betriebenes Fahrschiffmodell 101 5.1.2 Ganzheitliches Fahrschiffmodell 101 5.1.3 Ganzheitliches Fahrzeugmodell 102 5.2 Simulation 103 5.2.1 Vergleich des rheonomen mit dem ganzheitlichen Fahrschiffmodell 103 5.2.2 Einfluss der Oberbauelastizität auf das Fahrverhaltens 104 5.2.3 Einfluss der Phasenlage (Parallelfahrt) 105 5.2.4 Vergleich Messung und Simulation 108 6 Ganzheitliche Optimierung am Fahrschiffmodell 115 6.1 Methodik 115 6.2 Kontinuierliche Rollbahn 115 6.2.1 Hintergrund 115 6.2.2 Erprobung am Ersatzmodell des Fahrwerkes 116 6.2.3 Erprobung am MKS-Kontaktmodell des Fahrwerkes 117 6.3 PI-Motordrehzahlregelung 118 6.3.1 Hintergrund 118 6.3.2 Erprobung am Ersatzmodell mit Schakental-Design 119 6.3.3 Erprobung am MKS-Kontanktmodell mit Schakental-Design 122 6.3.4 Erprobung am Ersatzmodell mit kontinuierlicher Rollbahn 124 6.3.5 Erprobung am MKS-Kontaktmodell mit kontinuierlicher Rollbahn 126 6.3.6 Fazit PI-Drehzahlregelung 127 6.4 PI-Zustandsregelung 127 6.4.1 Methodik 127 6.4.2 Erprobung am Ersatzmodell mit Schakental-Design 133 6.4.3 Erprobung am MKS-Kontaktmodell mit Schakental-Design 135 6.4.4 Erprobung am Ersatzmodell mit kontinuierlicher Rollbahn 135 6.4.5 Erprobung am MKS-Kontaktmodell mit kontinuierlicher Rollbahn 137 6.4.6 Fazit PI-Zustandsregelung 138 6.5 Statische und statisch-dynamische Kettenvorspannung 139 6.5.1 Hintergrund 139 6.5.2 Erprobung am Ersatzmodell 140 6.5.3 Erprobung am MKS-Kontaktmodell 142 6.5.4 Kritische Bewertung 143 7 Ganzheitliche Optimierung am Fahrzeugmodell 144 7.1 Methodik 144 7.2 Kontinuierliche Rollbahn 144 7.3 Kontinuierliche Rollbahn und statische Kettenvorspannung 145 8 Zusammenfassung und Ausblick 146 Literatur 149 Abbildungsverzeichnis 154 Tabellenverzeichnis 159 A Auswertungsgrößen 160 A.1. Amplitudensignal 160 A.2. Schwingungseffektivwert 160 A.3. Kreuzkorrelationskoeffizient 161 B Analytische Berechnung der Lasten bei Kurvenfahrt 162 C Korrelationen CB-Set 164
17

Multiaxialer Räderprüfstand - Auslegung eines hoch dynamischen Hexapoden mittels moderner Simulationswerkzeuge

Dwolinski, Thomas 02 July 2018 (has links)
Der neu entwickelte Multiaxiale Räderprüfstand wurde für hoch dynamische Radkräfte konzipiert. Das Prüfstands-Konzept basiert auf einer Parallelkinematik im Hexapoden-Design. Die Auslegung der Kinematik und der Kräfte wurde mit Creo MDO/MDX durchgeführt. Die grundsätzliche Vorgehensweise wird anhand von Beispielen aufgezeigt. Aufgrund der hohen Dynamik ist es erforderlich das maschinendynamische Verhalten bei der Auslegung zu berücksichtigen. Dazu wurde ein Simulationsmodell des gesamten Prüfstandes in Creo Simulate erstellt und entsprechende Modal- und dynamische Frequenzanalysen durchgeführt. Der grundsätzliche Modellaufbau und Simulationsergebnisse werden vorgestellt. Auch auf die Verifizierung durch Messungen wird eingegangen. Letzter Punkt ist das Ableiten eines geeigneten Sub-Simulations-Modells, welches den Kraftfluss der Hexapoden-Architektur für weitere Untersuchungen richtig abbildet.
18

Dynamische Auslegung von Zahnradgetrieben mittels Mehrkörpersimulation

Eiselt, Uwe, Kelichhaus, Thomas 02 July 2018 (has links)
Auf Grund wachsender Nachfrage der simulativen Beurteilung von Getrieben hinsichtlich Geräuschentwicklung, Vibration und Belastbarkeit, kommt den Berechnungsmethoden immer größere Bedeutung zu. Hier spielen nicht nur die Steifigkeit der Verzahnung, sondern auch die Steifigkeiten der Wellen, Lagerungen und Gehäuse eine wichtige Rolle. Dazu werden unterschiedliche Simulationsmethoden vorgestellt und diese hinsichtlich Genauigkeit, Effizienz und Limitierung bewertet. Ein wichtiger Aspekt ist in diesem Zusammenhang auch die Modellbildung, insbesondere die Ermittlung der Eingabedaten für die Beschreibung der einzelnen Komponenten und deren Verbindungselemente. Die Koppelung des Mehrkörpersystems mit einem speziellen Auslegungstool für Getriebekomponenten ist neben der Multi-Physics-Simulation und der klassischen Mehrkörperdynamik eine Methode, die die Stärken beider Tools verbindet.
19

Modelling of Automotive Suspension Damper / Modellering av spjäll för fordon

Vyas, Saurabh, Jonnalagadda, Venkata Dinesh Raju January 2020 (has links)
A hydraulic damper plays an important role in tuning the handling and comfort characteristicsof a vehicle. Tuning and selecting a damper based on subjective evaluation, by considering theopinions of various users, would be an inefficient method since the comfort requirements of usersvary a lot. Instead, mathematical models of damper and simulation of these models in variousoperating conditions are preferred to standardize the tuning procedure, quantify the comfortlevels and reduce cost of testing. This would require a model, which is good enough to capture thebehaviour of damper in various operating and extreme conditions.The Force-Velocity (FV) curve is one of the most widely used model of a damper. This curve isimplemented either as an equation or as a look-up table. It is a plot between the maximum forceat each peak velocity point. There are certain dynamic phenomena like hysteresis and dependencyon the displacement of damper, which cannot be captured with a FV curve model, but are requiredfor better understanding of the vehicle behaviour.This thesis was conducted in cooperation with Volvo Cars with an aim to improve the existingdamper model which is a Force-Velocity curve. This work focuses on developing a damper model,which is complex enough to capture the phenomena discussed above and simple enough to beimplemented in real time simulations. Also, the thesis aims to establish a standard method toparameterise the damper model and generate the Force-Velocity curve from the tests performedon the damper test rig. A test matrix which includes the standard tests for parameterising andthe extreme test cases for the validation of the developed model will be developed. The final focusis to implement the damper model in a multi body simulation (MBS) software.The master thesis starts with an introduction, where the background for the project is described and then the thesis goals are set. It is followed by a literature review in which fewadvanced damper models are discussed in brief. Then, a step-by-step process of developing thedamper model is discussed along with few more possible options. Later, the construction of a testmatrix is discussed in detail followed by the parameter identification process. Next, the validationof the developed damper model is discussed using the test data from Volvo Hällered ProvingGround (HPG). After validation, implementation of the model in VI CarRealTime and Adams Caralong with the results are presented. Finally the thesis is concluded and the recommendations forfuture work are made on further improving the model. / En hydraulisk stötdämpare spelar en viktig roll för att fordonets hantering och komfort. Attjustera och välja en stötdämpare baserat på subjektiv utvärdering, genom att beakta olika användares åsikter, skulle vara en ineffektiv metod eftersom användarnas komfortkrav varierarmycket. Istället föredras matematiska modeller av stötdämpare och simulering av dessa modellerunder olika driftsförhållanden för att standardisera inställningsförfarandet, kvantifiera komfortnivåerna och minska testkostnaden. Detta skulle kräva en modell som är tillräckligt bra för attfånga upp stötdämparens beteende under olika drifts- och extrema förhållanden.Force-Velocity (FV) -kurvan är en av de mest använda stötdämparmodellerna. Denna kurvaimplementeras antingen som en ekvation eller som en uppslagstabell. Det är ett diagram somredovisar den maximala kraften vid varje maxhastighetspunkt. Det finns vissa dynamiskafenomen som hysteres och beroende av stötdämparens förskjutning, som inte kan fångas med enFV-kurvmodell, men som krävs för att bättre förstå fordonets beteende.Denna avhandling genomfördes i samarbete med Volvo Cars i syfte att förbättra den befintligastötdämparmodellen som är en Force-Velocity-kurva. Detta arbete fokuserar på att utveckla enstötdämparmodell, som är tillräckligt komplex för att fånga upp de fenomen som diskuteratsovan och tillräckligt enkel för att implementeras i realtidssimuleringar. Avhandlingen syftarockså till att upprätta en standardmetod för att parametrisera spjällmodellen och generera ForceVelocity-kurvan från de test som utförts på stötdämpartestriggen. En testmatris som innehållerstandardtest för parametrisering och extrema testfall för validering av den utvecklade modellenkommer att utvecklas. Det sista fokuset är att implementera stötdämparmodellen i en multi-bodysimulation (MBS) programvara.Examensarbetet inleds med en introduktion, där bakgrunden för projektet beskrivs ochdärefter definieras målen med arbetet. Det följs av en litteraturöversikt där några avanceradestötdämparmodeller diskuteras i korthet. Därefter diskuteras en steg-för-steg-process för attutveckla stötdämparmodeller tillsammans med några fler möjliga alternativ. Senare diskuteraskonstruktionen av en testmatris i detalj följt av parameteridentifieringsprocessen. Därefterdiskuteras valideringen av den utvecklade stötdämparmodellen med hjälp av testdata från VolvoHällered Proving Ground (HPG). Efter validering presenteras implementeringen av modellen iVI CarRealTime och Adams Car tillsammans med resultaten. Slutligen avslutas rapporten medslutsatser från arbetet och rekommendationer för framtida arbete görs för att ytterligare förbättramodellen.

Page generated in 0.1083 seconds