• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beiträge zur Steuerung und Regelung von mehrvariablen linearen zeitinvarianten Systemen in polynomialer Darstellung

Lindert, Sven-Olaf 26 January 2010 (has links) (PDF)
In dieser Arbeit werden lineare zeitinvariante endlichdimensionale Systeme (LTI-Systeme) mit m > 1 Eingängen und p > 1 Ausgängen untersucht (MIMO-Systeme). Diese lassen sich darstellen durch lineare Gleichungen mit Matrizen, deren Einträge Polynome im Ableitungsoperator d/dt sind. Bei Nutzung der Laplace-Transformation handelt es sich um Polynome in s. Algebraisch bilden diese einen Euklidischen Ring. Durch Überführung der Matrizen in die Hermitesche Normalform werden m Basisgrößen definiert. Die Verläufe oder Trajektorien der Basisgrößen lassen sich frei vorgegeben. Damit werden die Trajektorien sämtlicher übrigen Signale, insbesondere die der erforderlichen Eingangssignale, festgelegt und können ohne Integration berechnet werden. Ein linksteilerfremdes (auch steuerbar genanntes) Modell ist dabei nicht zwingend erforderlich. Damit eignen sich die Basisgrößen besonders zur Planung von Trajektorien. Genauer untersucht wird die Planung mit Polynomen in der Zeit als Ansatzfunktionen und die Planung von Trajektorien, die ein quadratisches Kostenfunktional minimieren. In der technischen Praxis werden die Systeme stets von den geplanten Trajektorien abweichen. Insbesondere bei instabilen Regelstrecken ist deshalb ein stabilisierender Folgeregler unentbehrlich. Die Struktur der Folgeregelung wird eingeführt und es wird deutlich gemacht, dass jede Methode zum Entwurf linearer Regler angewendet werden kann. Die Nullstellenzuweisung durch dynamische Ausgangsrückführung mit Reglern vorgegebener möglichst geringer dynamischer Ordnung wird detailliert untersucht und eine neue Lösungsmöglichkeit aufgezeigt. Durch Nutzung der modifizierten z-Transformation lässt sich die Theorie auf ein hybrides System, bestehend aus einer zeitkontinuierlichen Regelstrecke und einer zeitdiskreten digitalen Steuerung und Regelung, ausdehnen. Dabei werden die Verläufe der Signale zwischen den Abtastzeitpunkten in die Planung einbezogen. Zum Schluss werden die linearen Beobachter im Licht der polynomialen Matrizendarstellung neu untersucht. Es wird gezeigt, dass die polynomiale Matrizendarstellung einen theoretischen Rahmen bietet, in dem sich sämtliche linearen Beobachter mit einer Methode entwerfen lassen. - (Die Dissertation ist veröffentlicht in der Reihe Fortschritt-Berichte VDI, Reihe 8 - Mess-, Steuerungs- und Regelungstechnik, Band 1164 im VDI Verlag GmbH, Düsseldorf, ISBN 978-3-18-516408-8) / In this thesis linear time invariant lumped systems (LTI-systems) with m>1 inputs and p > 1 outputs (MIMO-systems) are investigated. These systems can be represented by linear equations with matrices, whose entries are polynomials in the differential operator d/dt. If Laplace-transform is employed, the polynomials are in s. Algebraically polynomials form a Euclidean ring. The conversion of the matrices to the Hermite form leads to defining m basic variables. The trajectories of the basis variables may be chosen arbitrarily. With that choice the trajectories of all remaining variables and especially the input variables are determined and can be calculated without integration. A left coprime (also called controllable) model is not required. Hence basis variables are particularly useful for planning trajectories. Special attention is paid to planning trajectories with polynomials in time as basic functions and planning trajectories which minimise a quadratic functional of costs. In engineering practice the systems will always differ from the planed trajectories. Especially with unstable plants a stabilising tracking controller is compulsory. The structure of the tracking control is introduced. It becomes apparent that every linear theory for the design of closed loop controllers is suitable. Pole assignment by dynamic output feedback with low order controllers of a fixed structure is looked at in more detail. A new approach to this problem is presented. Using the modified z-transform the theory is extended to hybrid systems consisting of a digital or discrete time controller and a plant in continuous time. Thereby the course of the signals between the sampling moments is taken into account. Finally linear observers are reinvestigated using the polynomial matrix representation. It is shown that the polynomial matrix representation provides a theoretical framework in which all linear observers can be designed.
2

A Partially Randomized Approach to Trajectory Planning and Optimization for Mobile Robots with Flat Dynamics

Seemann, Martin 21 May 2019 (has links)
Motion planning problems are characterized by huge search spaces and complex obstacle structures with no concise mathematical expression. The fixed-wing airplane application considered in this thesis adds differential constraints and point-wise bounds, i. e. an infinite number of equality and inequality constraints. An optimal trajectory planning approach is presented, based on the randomized Rapidly-exploring Random Trees framework (RRT*). The local planner relies on differential flatness of the equations of motion to obtain tree branch candidates that automatically satisfy the differential constraints. Flat output trajectories, in this case equivalent to the airplane's flight path, are designed using Bézier curves. Segment feasibility in terms of point-wise inequality constraints is tested by an indicator integral, which is evaluated alongside the segment cost functional. Although the RRT* guarantees optimality in the limit of infinite planning time, it is argued by intuition and experimentation that convergence is not approached at a practically useful rate. Therefore, the randomized planner is augmented by a deterministic variational optimization technique. To this end, the optimal planning task is formulated as a semi-infinite optimization problem, using the intermediate result of the RRT(*) as an initial guess. The proposed optimization algorithm follows the feasible flavor of the primal-dual interior point paradigm. Discretization of functional (infinite) constraints is deferred to the linear subproblems, where it is realized implicitly by numeric quadrature. An inherent numerical ill-conditioning of the method is circumvented by a reduction-like approach, which tracks active constraint locations by introducing new problem variables. Obstacle avoidance is achieved by extending the line search procedure and dynamically adding obstacle-awareness constraints to the problem formulation. Experimental evaluation confirms that the hybrid approach is practically feasible and does indeed outperform RRT*'s built-in optimization mechanism, but the computational burden is still significant. / Bewegungsplanungsaufgaben sind typischerweise gekennzeichnet durch umfangreiche Suchräume, deren vollständige Exploration nicht praktikabel ist, sowie durch unstrukturierte Hindernisse, für die nur selten eine geschlossene mathematische Beschreibung existiert. Bei der in dieser Arbeit betrachteten Anwendung auf Flächenflugzeuge kommen differentielle Randbedingungen und beschränkte Systemgrößen erschwerend hinzu. Der vorgestellte Ansatz zur optimalen Trajektorienplanung basiert auf dem Rapidly-exploring Random Trees-Algorithmus (RRT*), welcher die Suchraumkomplexität durch Randomisierung beherrschbar macht. Der spezifische Beitrag ist eine Realisierung des lokalen Planers zur Generierung der Äste des Suchbaums. Dieser erfordert ein flaches Bewegungsmodell, sodass differentielle Randbedingungen automatisch erfüllt sind. Die Trajektorien des flachen Ausgangs, welche im betrachteten Beispiel der Flugbahn entsprechen, werden mittels Bézier-Kurven entworfen. Die Einhaltung der Ungleichungsnebenbedingungen wird durch ein Indikator-Integral überprüft, welches sich mit wenig Zusatzaufwand parallel zum Kostenfunktional berechnen lässt. Zwar konvergiert der RRT*-Algorithmus (im probabilistischen Sinne) zu einer optimalen Lösung, jedoch ist die Konvergenzrate aus praktischer Sicht unbrauchbar langsam. Es ist daher naheliegend, den Planer durch ein gradientenbasiertes lokales Optimierungsverfahren mit besseren Konvergenzeigenschaften zu unterstützen. Hierzu wird die aktuelle Zwischenlösung des Planers als Initialschätzung für ein kompatibles semi-infinites Optimierungsproblem verwendet. Der vorgeschlagene Optimierungsalgorithmus erweitert das verbreitete innere-Punkte-Konzept (primal dual interior point method) auf semi-infinite Probleme. Eine explizite Diskretisierung der funktionalen Ungleichungsnebenbedingungen ist nicht erforderlich, denn diese erfolgt implizit durch eine numerische Integralauswertung im Rahmen der linearen Teilprobleme. Da die Methode an Stellen aktiver Nebenbedingungen nicht wohldefiniert ist, kommt zusätzlich eine Variante des Reduktions-Ansatzes zum Einsatz, bei welcher der Vektor der Optimierungsvariablen um die (endliche) Menge der aktiven Indizes erweitert wird. Weiterhin wurde eine Kollisionsvermeidung integriert, die in den Teilschritt der Liniensuche eingreift und die Problemformulierung dynamisch um Randbedingungen zur lokalen Berücksichtigung von Hindernissen erweitert. Experimentelle Untersuchungen bestätigen, dass die Ergebnisse des hybriden Ansatzes aus RRT(*) und numerischem Optimierungsverfahren der klassischen RRT*-basierten Trajektorienoptimierung überlegen sind. Der erforderliche Rechenaufwand ist zwar beträchtlich, aber unter realistischen Bedingungen praktisch beherrschbar.
3

Regelungstheoretische Analyse- und Entwurfsansätze für unteraktuierte mechanische Systeme

Knoll, Carsten 16 February 2017 (has links) (PDF)
Die Arbeit ist der regelungstheoretischen Betrachtung von mechanischen Systemen mit mehr Freiheitsgraden als Stellgrößen gewidmet. Dabei werden Aspekte aus den Teilgebieten Modellbildung, Systemanalyse, Steuerungsentwurf und Reglerentwurf behandelt. Den Ausgangspunkt bilden die aus dem Lagrange-Formalismus resultierenden Bewegungsgleichungen, für welche neben verschiedene partiell linearisierten Zustandsdarstellungen auch eine spezielle Byrnes-Isidori-Normalform eingeführt wird. Im Unterschied zu einer früher vorgeschlagenen ähnliche Normalform existiert diese "Lagrange-Byrnes-Isidori-Normalform" immer. Weiterhin wird die bedeutende Eigenschaft der differentiellen Flachheit im Zusammenhang mit mechanischen Systemen untersucht. Die bestehende Lücke zwischen den bekannten notwendigen und hinreichenden Flachheitsbedingungen bildet die Motivation zur Anpassung der Regelflächenbedingung auf mechanische Systeme in Lagrange-Byrnes-Isidori-Normalform. Parallel dazu wird die Flachheitsanalyse auf Basis des sogenannten Variationssystems betrachtet. Dabei handelt es sich um ein System von 1-Formen, die durch Anwendung der äußeren Ableitung auf die impliziten Systemgleichungen entstehen. Äquivalent dazu können auch die in einer rechteckigen Polynommatrix bezüglich des Zeitableitungsoperators zusammengefassten Koeffizienten der Basisformen untersucht werden. Die Flachheit eines Systems ist nun gerade äquivalent zur Existenz einer unimodularen Vervollständigung dieser Matrix, welche zudem noch eine bestimmte Integrabilitätsbedingung erfüllen muss. Durch Anwendung des Satzes von Frobenius können aus diesen in der bisherigen Formulierung nur schwer überprüfbaren Bedingungen deutlich einfachere hergeleitet werden. Für den Eingrößenfall ergibt sich dadurch eine erheblich Verringerung des Rechenaufwandes im Vergleich zum Referenzansatz. Im Mehrgrößenfall ist die Situation komplizierter: Durch das Fallenlassen der Unimodularitätsforderung und die Ausnutzung der speziellen Struktur mechanischer Systeme erhält man eine neue notwendige Bedingung für Flachheit, welche sich in endlich vielen Schritten auswerten lässt. Allerdings konnte mit dieser die vermutete Nichtflachheit für die untersuchten mechanischen Beispielsysteme nicht nachgewiesen werden. Einen weiteren Untersuchungsgegenstand bildet das Konzept der Konfigurationsflachheit. Für diese Eigenschaft ist gefordert, dass ein flacher Ausgang existieren muss, der nur von den Konfigurationskoordinaten abhängt. Basierend auf theoretischen Überlungen und dem Fehlen von Gegenbeispielen wird die Hypothese aufgestellt, dass für konservative mechanische Systeme Flachheit und Konfigurationsflachheit äquivalent sind. Für lineare mechanische Systeme kann diese Hypothese mit Hilfe der Kronecker-Normalform von Matrizenscharen verifiziert werden. Bezüglich des Entwurfs von Solltrajektorien werden neben der Darstellung bekannter Verfahren für lineare und für flache Systeme zwei weitere Ansätze genauer diskutiert. Der erste basiert auf der numerischen Lösung des aus dem Steuerungsentwurf resultierenden Randwertproblems. Dazu wird ein angepasstes Kollokationsverfahren konstruiert, welches die Elimination von Systemgrößen durch die explizite Berücksichtigung von Integratorketten ermöglicht, die bei partiell linearisierten Systemen stets auftreten. Unter bestimmten Bedingungen bewirkt dies eine erhebliche Reduktion der Rechenzeit. Der zweite Ansatz betrachtet die Überführung zwischen zwei Ruhelagen und beruht auf der Zeitumkehrsymmetrie, die alle konservativen mechanischen Systeme aufweisen. Er besteht aus mehreren Schritten: Zunächst wird für beide Ruhelagen eine Rückführung mit möglichst großem Attraktivitätsgebiet entworfen. Danach wird das System simulativ ausgehend von der Zielruhelage in der Startruhelage stabilisiert. Die so erhaltene Eingangstrajektorie kann dann bezüglich der Zeit invertiert werden, um das System aus der Startruhelage in die Nähe der Zielruhelage zu überführen, wo schließlich der entsprechende Regler aktiviert wird. In praktischen Realisierungen von unteraktuierten Regelungssystemen treten auf Grund von Effekten wie trockener Reibung und Getriebespiel oft Dauerschwingungen mit schwer vorhersagbaren und beeinflussbaren Parametern auf. Als Alternative zur klassischen Stabilisierung einer (theoretischen) Ruhelage wird deshalb eine Rückführung hergeleitet, welche für ein gegebenes lineares System einen stabilen Grenzzyklus mit vorgebbarer Frequenz und Amplitude asymptotisch stabilisiert.
4

Commissioning new applications on processing machines: Part I - process modelling

Troll, Clemens, Schebitz, Benno, Majschak, Jens-Peter, Döring, Michael, Holowenko, Olaf, Ihlenfeldt, Steffen 08 June 2018 (has links) (PDF)
The subject of this splitted article is the commissioning of a new application that may be part of a processing machine. Considering the example of the intermittent transport of small-sized goods, for example, chocolate bars, ideas for increasing the maximum performance are discussed. Starting from an analysis, disadvantages of a conventional motion approach are discussed, and thus, a new motion approach is presented. For realising this new motion approach, a virtual process model has to be built, which is the subject of this article. Therefore, the real process has to be abstracted, so only the main elements take attention in the modelling process. Following, important model parameters are determined and verified using virtual experiments. This finally leads to the possibility to calculate useful operating speed–dependent trajectories using the process model.
5

Commissioning new applications on processing machines: Part I - process modelling

Troll, Clemens, Schebitz, Benno, Majschak, Jens-Peter, Döring, Michael, Holowenko, Olaf, Ihlenfeldt, Steffen 08 June 2018 (has links)
The subject of this splitted article is the commissioning of a new application that may be part of a processing machine. Considering the example of the intermittent transport of small-sized goods, for example, chocolate bars, ideas for increasing the maximum performance are discussed. Starting from an analysis, disadvantages of a conventional motion approach are discussed, and thus, a new motion approach is presented. For realising this new motion approach, a virtual process model has to be built, which is the subject of this article. Therefore, the real process has to be abstracted, so only the main elements take attention in the modelling process. Following, important model parameters are determined and verified using virtual experiments. This finally leads to the possibility to calculate useful operating speed–dependent trajectories using the process model.
6

Regelungstheoretische Analyse- und Entwurfsansätze für unteraktuierte mechanische Systeme

Knoll, Carsten 02 September 2016 (has links)
Die Arbeit ist der regelungstheoretischen Betrachtung von mechanischen Systemen mit mehr Freiheitsgraden als Stellgrößen gewidmet. Dabei werden Aspekte aus den Teilgebieten Modellbildung, Systemanalyse, Steuerungsentwurf und Reglerentwurf behandelt. Den Ausgangspunkt bilden die aus dem Lagrange-Formalismus resultierenden Bewegungsgleichungen, für welche neben verschiedene partiell linearisierten Zustandsdarstellungen auch eine spezielle Byrnes-Isidori-Normalform eingeführt wird. Im Unterschied zu einer früher vorgeschlagenen ähnliche Normalform existiert diese "Lagrange-Byrnes-Isidori-Normalform" immer. Weiterhin wird die bedeutende Eigenschaft der differentiellen Flachheit im Zusammenhang mit mechanischen Systemen untersucht. Die bestehende Lücke zwischen den bekannten notwendigen und hinreichenden Flachheitsbedingungen bildet die Motivation zur Anpassung der Regelflächenbedingung auf mechanische Systeme in Lagrange-Byrnes-Isidori-Normalform. Parallel dazu wird die Flachheitsanalyse auf Basis des sogenannten Variationssystems betrachtet. Dabei handelt es sich um ein System von 1-Formen, die durch Anwendung der äußeren Ableitung auf die impliziten Systemgleichungen entstehen. Äquivalent dazu können auch die in einer rechteckigen Polynommatrix bezüglich des Zeitableitungsoperators zusammengefassten Koeffizienten der Basisformen untersucht werden. Die Flachheit eines Systems ist nun gerade äquivalent zur Existenz einer unimodularen Vervollständigung dieser Matrix, welche zudem noch eine bestimmte Integrabilitätsbedingung erfüllen muss. Durch Anwendung des Satzes von Frobenius können aus diesen in der bisherigen Formulierung nur schwer überprüfbaren Bedingungen deutlich einfachere hergeleitet werden. Für den Eingrößenfall ergibt sich dadurch eine erheblich Verringerung des Rechenaufwandes im Vergleich zum Referenzansatz. Im Mehrgrößenfall ist die Situation komplizierter: Durch das Fallenlassen der Unimodularitätsforderung und die Ausnutzung der speziellen Struktur mechanischer Systeme erhält man eine neue notwendige Bedingung für Flachheit, welche sich in endlich vielen Schritten auswerten lässt. Allerdings konnte mit dieser die vermutete Nichtflachheit für die untersuchten mechanischen Beispielsysteme nicht nachgewiesen werden. Einen weiteren Untersuchungsgegenstand bildet das Konzept der Konfigurationsflachheit. Für diese Eigenschaft ist gefordert, dass ein flacher Ausgang existieren muss, der nur von den Konfigurationskoordinaten abhängt. Basierend auf theoretischen Überlungen und dem Fehlen von Gegenbeispielen wird die Hypothese aufgestellt, dass für konservative mechanische Systeme Flachheit und Konfigurationsflachheit äquivalent sind. Für lineare mechanische Systeme kann diese Hypothese mit Hilfe der Kronecker-Normalform von Matrizenscharen verifiziert werden. Bezüglich des Entwurfs von Solltrajektorien werden neben der Darstellung bekannter Verfahren für lineare und für flache Systeme zwei weitere Ansätze genauer diskutiert. Der erste basiert auf der numerischen Lösung des aus dem Steuerungsentwurf resultierenden Randwertproblems. Dazu wird ein angepasstes Kollokationsverfahren konstruiert, welches die Elimination von Systemgrößen durch die explizite Berücksichtigung von Integratorketten ermöglicht, die bei partiell linearisierten Systemen stets auftreten. Unter bestimmten Bedingungen bewirkt dies eine erhebliche Reduktion der Rechenzeit. Der zweite Ansatz betrachtet die Überführung zwischen zwei Ruhelagen und beruht auf der Zeitumkehrsymmetrie, die alle konservativen mechanischen Systeme aufweisen. Er besteht aus mehreren Schritten: Zunächst wird für beide Ruhelagen eine Rückführung mit möglichst großem Attraktivitätsgebiet entworfen. Danach wird das System simulativ ausgehend von der Zielruhelage in der Startruhelage stabilisiert. Die so erhaltene Eingangstrajektorie kann dann bezüglich der Zeit invertiert werden, um das System aus der Startruhelage in die Nähe der Zielruhelage zu überführen, wo schließlich der entsprechende Regler aktiviert wird. In praktischen Realisierungen von unteraktuierten Regelungssystemen treten auf Grund von Effekten wie trockener Reibung und Getriebespiel oft Dauerschwingungen mit schwer vorhersagbaren und beeinflussbaren Parametern auf. Als Alternative zur klassischen Stabilisierung einer (theoretischen) Ruhelage wird deshalb eine Rückführung hergeleitet, welche für ein gegebenes lineares System einen stabilen Grenzzyklus mit vorgebbarer Frequenz und Amplitude asymptotisch stabilisiert.
7

Beiträge zur Steuerung und Regelung von mehrvariablen linearen zeitinvarianten Systemen in polynomialer Darstellung

Lindert, Sven-Olaf 09 October 2009 (has links)
In dieser Arbeit werden lineare zeitinvariante endlichdimensionale Systeme (LTI-Systeme) mit m > 1 Eingängen und p > 1 Ausgängen untersucht (MIMO-Systeme). Diese lassen sich darstellen durch lineare Gleichungen mit Matrizen, deren Einträge Polynome im Ableitungsoperator d/dt sind. Bei Nutzung der Laplace-Transformation handelt es sich um Polynome in s. Algebraisch bilden diese einen Euklidischen Ring. Durch Überführung der Matrizen in die Hermitesche Normalform werden m Basisgrößen definiert. Die Verläufe oder Trajektorien der Basisgrößen lassen sich frei vorgegeben. Damit werden die Trajektorien sämtlicher übrigen Signale, insbesondere die der erforderlichen Eingangssignale, festgelegt und können ohne Integration berechnet werden. Ein linksteilerfremdes (auch steuerbar genanntes) Modell ist dabei nicht zwingend erforderlich. Damit eignen sich die Basisgrößen besonders zur Planung von Trajektorien. Genauer untersucht wird die Planung mit Polynomen in der Zeit als Ansatzfunktionen und die Planung von Trajektorien, die ein quadratisches Kostenfunktional minimieren. In der technischen Praxis werden die Systeme stets von den geplanten Trajektorien abweichen. Insbesondere bei instabilen Regelstrecken ist deshalb ein stabilisierender Folgeregler unentbehrlich. Die Struktur der Folgeregelung wird eingeführt und es wird deutlich gemacht, dass jede Methode zum Entwurf linearer Regler angewendet werden kann. Die Nullstellenzuweisung durch dynamische Ausgangsrückführung mit Reglern vorgegebener möglichst geringer dynamischer Ordnung wird detailliert untersucht und eine neue Lösungsmöglichkeit aufgezeigt. Durch Nutzung der modifizierten z-Transformation lässt sich die Theorie auf ein hybrides System, bestehend aus einer zeitkontinuierlichen Regelstrecke und einer zeitdiskreten digitalen Steuerung und Regelung, ausdehnen. Dabei werden die Verläufe der Signale zwischen den Abtastzeitpunkten in die Planung einbezogen. Zum Schluss werden die linearen Beobachter im Licht der polynomialen Matrizendarstellung neu untersucht. Es wird gezeigt, dass die polynomiale Matrizendarstellung einen theoretischen Rahmen bietet, in dem sich sämtliche linearen Beobachter mit einer Methode entwerfen lassen. - (Die Dissertation ist veröffentlicht in der Reihe Fortschritt-Berichte VDI, Reihe 8 - Mess-, Steuerungs- und Regelungstechnik, Band 1164 im VDI Verlag GmbH, Düsseldorf, ISBN 978-3-18-516408-8) / In this thesis linear time invariant lumped systems (LTI-systems) with m>1 inputs and p > 1 outputs (MIMO-systems) are investigated. These systems can be represented by linear equations with matrices, whose entries are polynomials in the differential operator d/dt. If Laplace-transform is employed, the polynomials are in s. Algebraically polynomials form a Euclidean ring. The conversion of the matrices to the Hermite form leads to defining m basic variables. The trajectories of the basis variables may be chosen arbitrarily. With that choice the trajectories of all remaining variables and especially the input variables are determined and can be calculated without integration. A left coprime (also called controllable) model is not required. Hence basis variables are particularly useful for planning trajectories. Special attention is paid to planning trajectories with polynomials in time as basic functions and planning trajectories which minimise a quadratic functional of costs. In engineering practice the systems will always differ from the planed trajectories. Especially with unstable plants a stabilising tracking controller is compulsory. The structure of the tracking control is introduced. It becomes apparent that every linear theory for the design of closed loop controllers is suitable. Pole assignment by dynamic output feedback with low order controllers of a fixed structure is looked at in more detail. A new approach to this problem is presented. Using the modified z-transform the theory is extended to hybrid systems consisting of a digital or discrete time controller and a plant in continuous time. Thereby the course of the signals between the sampling moments is taken into account. Finally linear observers are reinvestigated using the polynomial matrix representation. It is shown that the polynomial matrix representation provides a theoretical framework in which all linear observers can be designed.
8

Risk assessment for integral safety in operational motion planning of automated driving

Hruschka, Clemens Markus 14 January 2022 (has links)
New automated vehicles have the chance of high improvements to road safety. Nevertheless, from today's perspective, accidents will always be a part of future mobility. Following the “Vision Zero”, this thesis proposes the quantification of the driving situation's criticality as the basis to intervene by newly integrated safety systems. In the example application of trajectory planning, a continuous, real-time, risk-based criticality measure is used to consider uncertainties by collision probabilities as well as technical accident severities. As result, a smooth transition between preventative driving, collision avoidance, and collision mitigation including impact point localization is enabled and shown in fleet data analyses, simulations, and real test drives. The feasibility in automated driving is shown with currently available test equipment on the testing ground. Systematic analyses show an improvement of 20-30 % technical accident severity with respect to the underlying scenarios. That means up to one-third less injury probability for the vehicle occupants. In conclusion, predicting the risk preventively has a high chance to increase the road safety and thus to take the “Vision Zero” one step further.:Abstract Acknowledgements Contents Nomenclature 1.1 Background 1.2 Problem statement and research question 1.3 Contribution 2 Fundamentals and relatedWork 2.1 Integral safety 2.1.1 Integral applications 2.1.2 Accident Severity 2.1.2.1 Severity measures 2.1.2.2 Severity data bases 2.1.2.3 Severity estimation 2.1.3 Risk assessment in the driving process 2.1.3.1 Uncertainty consideration 2.1.3.2 Risk as a measure 2.1.3.3 Criticality measures in automated driving functions 2.2 Operational motion planning 2.2.1 Performance of a driving function 2.2.1.1 Terms related to scenarios 2.2.1.2 Evaluation and approval of an automated driving function 2.2.2 Driving function architecture 2.2.2.1 Architecture 2.2.2.2 Planner 2.2.2.3 Reference planner 2.2.3 Ethical issues 3 Risk assessment 3.1 Environment model 3.2 Risk as expected value 3.3 Collision probability and most probable collision configuration 4 Accident severity prediction 4.1 Mathematical preliminaries 4.1.1 Methodical approach 4.1.2 Output definition for pedestrian collisions 4.1.3 Output definition for vehicle collisions 4.2 Prediction models 4.2.1 Eccentric impact model 4.2.2 Centric impact model 4.2.3 Multi-body system 4.2.4 Feedforward neural network 4.2.5 Random forest regression 4.3 Parameterisation 4.3.1 Reference database 4.3.2 Training strategy 4.3.3 Model evaluation 5 Risk based motion planning 5.1 Ego vehicle dynamic 5.2 Reward function 5.3 Tuning of the driving function 5.3.1 Tuning strategy 5.3.2 Tuning scenarios 5.3.3 Tuning results 6 Evaluation of the risk based driving function 6.1 Evaluation strategy 6.2 Evaluation scenarios 6.3 Test setup and simulation environment 6.4 Subsequent risk assessment of fleet data 6.4.1 GIDAS accident database 6.4.2 Fleet data Hamburg 6.5 Uncertainty-adaptive driving 6.6 Mitigation application 6.6.1 Real test drives on proving ground 6.6.2 Driving performance in simulation 7 Conclusion and Prospects References List of Tables List of Figures A Extension to the tuning process

Page generated in 0.061 seconds