• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 47
  • 35
  • 8
  • 6
  • 6
  • 1
  • Tagged with
  • 207
  • 42
  • 38
  • 35
  • 34
  • 23
  • 20
  • 16
  • 16
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Macroscopic Patterning via Dynamic Self-assembly and Wrinkling Instability

Kim, Hyun Suk 01 September 2012 (has links)
My PhD work focuses on developing new methods to create the macroscopic patterns in a simple, robust, and versatile way. For macroscopic pattern formation, we first use flow coating as an assembly technique, uniquely balancing two driving forces: (i) evaporative deposition of nonvolatile solutes at a three-phase contact line and (ii) precision movement of a confined meniscus layer. This balance leads to the formation of line-based patterns that range in height and width from nanometers to microns, with lengths greater than centimeters. Moreover, we couple this deposition methodology with functional ligand chemistry on the nanoparticle surface, which allows us to create complex nanoparticle structures. By lifting crosslinked nanoparticle ribbons and ropes, exceptionally intriguing structures emanate from this process. The nanoparticle ribbons and ropes demonstrate a leap forward in nanomaterials fabrication, since the nanoscale properties are embedded within a macroscale object that can be manipulated with conventional methods and engineered into advanced technologies Using mechanical instability, we fabricate a simple, robust stimuli-responsive surface with periodic structures over a large area based upon osmotically-driven surface wrinkling. Although surface wrinkling has received considerable attention in the scientific literature, only a handful of papers have shown the ability to harness perhaps the greatest potential attribute of surface wrinkles: their active reversible nature. The ability to precisely control surface topographic morphologies in accordance with established scaling relationships opens a wide array of advanced materials applications, which do not rely upon cost-limiting fabrication techniques. Specifically, the surfaces respond to solvent exposure by developing well-defined topographic structures over laterally extensive areas due to osmotically-driven differential strains between a surface layer and underlying soft substrate. The observed wrinkling occurs spontaneously, forming hierarchical morphologies with controlled dimensions, and vanishes upon removal of the solvent driving force. The combined responsiveness and reversibility of wrinkling allow for the realization of functional devices, such as smart windows, smart microlens arrays, reversible channels in microfluidic devices. Moreover, by using thermal and osmotic approaches, we study the influence of geometry and material properties on surface instability such as cracking and wrinkling in a trilayer system consisting of a thin film on a soft foundation supported by a rigid substrate.
32

Multicomponent diffusion in polymers using NMR imaging

Grinsted, Ronald Allan January 1992 (has links)
No description available.
33

Kinetic Property and SS 316/Alloy 617 Corrosion Study in Molten Chloride and Fluoride Salts

Yang, Qiufeng 04 October 2022 (has links)
This study focused on the kinetic data measurements, such as diffusion coefficient D and exchange current density i_0 of the electrochemical reactions of corrosion products (Fe, Cr and Ni ions) and corrosive species (OH-), and corrosion studies of structural materials (SS 316H and Alloy 617), including static corrosion and galvanic corrosion, in molten MgCl2-NaCl-KCl and/or NaF-KF-UF4-UF3 salts in a temperature range of 600 to 800C. The study applied the semi-differential (SD) analysis method and innovative fitting method for the kinetic property data measurements in the multicomponent system of NaF-KF-UF4-UF3 salts. In molten MgCl2-NaCl-KCl salts, the measured D_(OH^- ) has the largest value followed by D_(〖Cr〗^(2+) ), D_(〖Fe〗^(2+) ), D_(〖Cr〗^(3+) ) and D_(〖Ni〗^(2+) ) at the studied temperatures, and none of the diffusion coefficients depends on the ion concentration in the studied concentration range and all of them followed the Arrhenius law. At the same temperature, the measured D_(Fe^(2+) ) and D_(〖Cr〗^(2+) ) values in molten NaF-KF-UF4-UF3 salts were slightly smaller than those obtained in molten MgCl2-NaCl-KCl salts. The non-linear curve fitting technique was applied to determine the exchange current density i_0, charge transfer coefficient α, limiting current density i_L and standard rate constant k^0 values. i_0 and k^0 followed the Arrhenius law. The obtained fundamental data can be applied to corrosion models which make the corrosion rate prediction possible in a static system from the experimental kinetic data. Corrosion studies of SS 316H and Alloy 617 in thermal purified molten NaF-KF-UF4-UF3 salts were performed for 120 hours. Based on the post-test analysis, the major metal species corrosion products were Cr, Fe and Mn in SS 316H tests, and Cr, Co, Ni in Alloy 617 tests. The measured UF4/UF3 ratio increased after corrosion tests because some of the U3+ was oxidized to U4+ by corrosive impurities and corrosion products during tests. Cr depletion and salt penetration were observed at grain boundaries (GBs) for both SS 316H and Alloy 617. For Alloy 617 specimens, the corroded area could be divided into two parts: the first part (near the surface) where Cr was completely depleted, and the second part (underneath the first part) where Cr was partially depleted. For SS 316H specimens, the average attack depth was larger than that of Alloy 617. Mo segregation was observed in the matrix of SS 316H specimens but was found to be enriched at GBs in the second part of Alloy 617 specimens. The corrosion study of Alloy 617 with time was also conducted for 72 hours and 32 hours, respectively. A thin layer composed of Fe, Co, Ni and Mo was found on the surface of the specimen, which was different from the previous 120-hour tests. In the salt, the concentration of Cr kept increasing with time, while for the other identified corroded elements, i.e., Fe, Co, Ni and Mo, their concentrations increased first, then decreased until becoming zero or stable. In the galvanic corrosion study of Alloy 617/graphite in molten NaF-KF-UF4-UF3 salts, the galvanic corrosion rate of Alloy 617 at 750C was about four times of that at 650C in the 2-hour tests, which indicated that temperature has a significant effect on the galvanic effect. In the 120-hour galvanic corrosion test, the galvanic corrosion rate became slightly larger with time in the studied system. Similar to the previous 120-hour Alloy 617 corrosion test, the corroded area of the post-test specimen was divided into two parts. The measured attack depth in both parts were much smaller compared with that in the 120-hour Alloy 617 test. This was because of the lower corrosive impurity concentrations in the salt used in the test. The salt in the galvanic corrosion test has been used in the previous corrosion test, during which the corrosive impurities were consumed, which made the salt less corrosive. Finally, it is necessary to point out that all the salts used in the present work were only thermally purified, which is effective in the removal of moisture but not in the removal of oxide impurities. Therefore, further studies are needed to understand the oxides' impacts on the corrosion behavior, especially on the salt penetration. / Doctor of Philosophy / Molten salt is a promising candidate that can be used as fuel and coolant in the molten salt reactors (MSRs). Besides, it can also be used as thermal energy storage, heat transfer fluid in the concentrated solar power plants, because it has high heat capacity, low vapor pressure, and high thermal conductivity. However, materials corrosion is a key concern of molten salt applications, and it is known that the corrosion by molten salts is mainly impurity driven. The impurities, such as moisture in the salts, can make the salt more oxidized, thus becoming more corrosive to corrode the structural materials. The present work focus on the kinetic property of metal specie corrosion products and non-metal impurity in the molten fluoride and chloride salts, which were directly related to the mass transfer and charge transfer process during the corrosion. Especially in the measurements of fluoride salts, innovative methods were applied which were confirmed to perform well in the multicomponent system (Fe and Cr ions coexisted). The static corrosion tests of SS 316H and Alloy 617 were conducted in molten fluoride salt at high temperatures. The main purpose was to study their corrosion behavior and understand the corrosion mechanisms. The corrosion rate of SS 316H was also estimated, which could be a crucial criterion in the material selection. In addition, the corrosion of Alloy 617 with time was also investigated. The metal specie corrosion product concentration change trends were obtained, and the corrosion behavior over the different corrosion stages was analyzed. Different corrosion phenomenon was observed in different corrosion test. Thus, they shed lights on the study of how the corrosion was developed during the corrosion process. Moreover, galvanic corrosion was another major corrosion type when two or more dissimilar materials were electrically contacted. The galvanic corrosion of Alloy 617/graphite was studied in the molten fluoride salts. The galvanic corrosion rate increased with the rise of temperature, which verified that temperature was a key factor that affected the galvanic corrosion. And the galvanic effect was also turned out to increase with time in the present study.
34

The design and synthesis of novel pro-drugs for the treatment of nephropathic cystinosis

Bahmed, Amina January 2015 (has links)
Cystinosis is a metabolic disorder characterised by the abnormal accumulation of the amino acid cystine in cells leading to a slow destruction of all major organs. If patients diagnosed with cystinosis are untreated, death due to kidney failure ensues in the second decade of life. A number of studies have shown the ability of the drug cysteamine (Cystagon®) to lower cystine accumulation within cells resulting in reduced organ and tissue damage. Cysteamine therapy however, is associated with a number of side effects involving the gastrointestinal tract and the central nervous system. Most of these arise due to the large amount of cysteamine present in the stomach and gut following administration. In addition, cysteamine possesses an unpleasant taste and smell, resulting in poor patient compliance. In an attempt to overcome these problems, a number of pro-drug derivatives of cysteamine and cystamine, the disulfide analogue of cysteamine, have been synthesised and evaluated. Pro-drugs were synthesised using a route established in our laboratories. Briefly, cystamine dihydrochloride was basified and allowed to react with a number of cyclic anhydrides under basic conditions. The resulting di-acids were reacted with carbonyldiimidazole and monoBoc-cystamine to yield the desired pro-drugs. Removal of the tBoc-protecting group was achieved in a facile manner by use of trifluoroacetic acid to yield product. The efficacy of the synthesised pro-drugs was determined by incubation of 50μM compound in a suspension of cultured cystinotic fibroblasts, with 50μM cysteamine as control. Cell growth was measured at 72 h and the level of thiol determined. All except one of the pro-drugs tested were significantly more effective than the control at lowering the cystine burden of the cells. Further work will concentrate on repeating these studies and evaluating a more robust Structure Activity Relationship for these compounds. The overall aim of all this work remains the production of an odourless, tasteless and orally active treatment for cystinosis and, if possible, improve on the current dosing regimen of every 6h. By using pro-drugs, cysteamine will be chemically camouflaged and hence, the side effects associated with its administration will be minimised or even entirely abolished.
35

Des réactions multicomposants impliquant des isonitriles a la synthèse d'heterocycles

Patil, Pravin 01 October 2012 (has links) (PDF)
Ces travaux mettent en valeur les réactions multicomposants a base d'isonitriles dans différentes applications autour des réactions d'Ugi-Smiles et de Nef pour la synthèse de systèmes hétérocycliques complexes. Nous avons démontré la possibilité d'utiliser des 4-hydroxypyridine et pyrimidines dans des couplages Ugi-Smiles. Ces réactions ont été appliquées à la préparation d'analogues d'antipaludéens. Diverses applications radicalaires ont été explorées sur des adduits de Ugi et Ugi-Smiles ( chimie des xanthates, couplages oxydatifs d'indoles). Nous avons par ailleurs exploré la chimie des dihalogénoisonitriles dans différentes synthèses hétérocycliques.
36

Multicomponent Reactions in 11C/12C Chemistry : – Targeting the Angiotensin II Subtype 2 Receptor

Stevens, Marc January 2016 (has links)
Section 1 of this thesis contains an introduction to method development in organic synthesis, multicomponent reactions, sulfonyl azides, tracer development in 11C chemistry and the biological target. Section 2 describes the use of sulfonyl azides in carbonylative chemistry. Paper I covers development of a diazotransfer protocol. In total, 30 arylsulfonyl azides were synthesised from primary sulfonamides (20–90% yield). 15N mechanistic studies were carried out and in Paper II, the products were converted into sulfonamides, sulfonylureas and sulfonyl carbamates (19–90% yield). For ureas and carbamates, a two-chamber protocol was employed to release CO from Mo(CO)6. 15N mechanistic studies showed that the sulfonamides were formed by direct displacement of azide. Section 3 covers imaging and biological studies of the angiotensin II receptor subtype 2 (AT2R). In Paper III, 12 11C-sulfonyl carbamates were prepared in isolated radiochemical yields of 3–51% via Rh(I)-mediated carbonylation. The first non-peptide AT2R agonist, C21, was labelled (isolated RCY 24±10%, SA 34–51 GBq/µmol). C21 was tested in a prostate cancer assay, followed by biodistribution and small-animal PET studies. In Paper IV, a 11C-labelled AT2R ligand prepared via Pd(0)-mediated aminocarbonylation was used for autoradiography, biodistribution and small-animal PET studies.   Section 4 describes the development of a multicomponent method for the synthesis of 3,4-dihydroquinazolinones (Paper V). 31 3,4-dihydroquinazolinones were synthesized via a cyclic iminium ion.
37

Exploiting Molecular Diversity to Access Biologically Relevant Chemotypes

Martinez Ariza, Guillermo, Martinez Ariza, Guillermo January 2016 (has links)
Small-molecule libraries with enhanced structural diversity are of value in drug discovery campaigns where novel biologically active hits are desired. As such, multicomponent reactions (MCRs) have proven fruitful to enhance the molecular diversity of chemical collections and expedite forward progression of the drug discovery chain. Bicalutamide (Casodex), an anticancer drug, and Telaprevir (Incivek), an antiviral, are two examples of marketed drugs that can be synthesized using an MCR. The research topic of this dissertation involves the design, discovery, and development of novel MCRs and new combinations of MCRs with post-condensation modifications to generate over twenty-five new drug-like scaffolds in an operationally friendly, atom-economical, time- and cost-effective fashion. The developed chemical methodologies possess inherent 'iterative efficiency','high exploratory power', and 'bond forming efficiency' that allow them to quickly explore chemical space and navigate the 'hypothesis-synthesis-screening' loop that is key for a medicinal chemistry project. The prepared molecules were submitted to the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial screening against pathogens that are known to cause drug-resistance infections.
38

Multikomponentní analýza / Multicomponent Analysis

Kovářová, Lucie January 2016 (has links)
Charles University in Prague, Faculty of Pharmacy in Hradec Králové Department of Biophysics and Physical Chemistry Candidate: Lucie Kovářová Supervisor: Ing. Vladimír Kubíček, CSc. Title of Diploma Thesis: Multicomponent analysis This diploma thesis deals with the determination of concentrations of individual dyes in mixtures by multicomponent spectrophotometric analysis. The method was tested on selected dyes which were divided into two groups. The first group contains methyl orange, methyl red, orange II and phenol red. The second group consists of methylene blue, bromocresol green and thymol blue. Within each group mixtures were prepared containing combinations of two, three and four dyes in various ratio. Spectra of prepared mixtures were measured by diode array UV/VIS spectrophotometer. Absorbance values were read at wavelengths of absorption maxima of the individual dyes. Using the pseudoinverse matrix, concentration ratios of components were calculated from the absorbance values. The determination in determined and over determined systems was performed. On the basis of the results obtained by the method of analysis it is possible to determine the individual concentration of the multi-component dyes mixtures without prior separation. Keywords: spectrophotometry, multicomponent analysis,...
39

Nouvelle méthodologie de synthèse de γ-butyrolactones par une réaction domino métallo-catalysée entre dérivés halogénés, composés carbonylés, et accepteurs de Michael / A new methodology for the synthesis of γ-butyrolactones by a metallo-catalyzed domino reaction between halogenated derivatives, carbonyl compounds and Michael acceptors

Le Floch, Camille 21 November 2011 (has links)
Le motif γ-butyrolactone est une entité naturelle très répandue et présente dans de nombreuses molécules à activité biologique. La substitution du cycle à cinq chaînons définit plusieurs classes de composés auxquels les acides paraconiques (portant une fonction acide carboxylique en position β du carbonyle) appartiennent. Ces composés possèdent des activités antitumorales et antibiotiques et représentent une unité structurale intéressante pour la synthèse de molécules à intérêt pharmaceutique. Cependant, la synthèse multicomposant de γ-butyrolactones a été très peu décrite jusqu'à présent. En se basant sur la réactivité sélective des organozinciques aromatiques, il a été supposé qu'une gamme d'acides paraconiques 2,3-polysubstitués pourrait être accessible à partir d'un organozincique, d'un composé carbonylé et d'un accepteur de Michael via une séquence domino métallo-catalysée impliquant la formation de trois liaisons simples par l'intermédiaire d'une addition conjuguée, d'une réaction d'aldolisation et d'une transestérification intramoléculaire aboutissant à la formation du cycle lactone. La réaction développée sur cette base a permis l'accès à une large gamme d'acides paraconiques 2,3-polysubstitués caractérisés par une chaîne benzyle fonctionnalisée en β du carbonyle. Une étude dédiée à la mise en lumière du mécanisme de cette réaction a été effectuée. L'activité antitumorale in vitro de ces composés a été testée sur différentes lignées de cellules cancéreuses (KB, HCT116, MCF7, HL60). Ces tests ont permis de mettre en évidence une molécule à activité intéressante, sur laquelle des tests supplémentaires ont été effectués (PC3, SK-OV3, MCF7R, HL60R, MRC5, EPC, mécanisme d'action) et des IC50 de 0,6 à 6 µM ont été mesurées sur la plupart de ces lignées. Une extension de la réaction à partir de dérivés ortho-bisubstitués a permis d'obtenir une gamme de lactones tricycliques ortho-condensées avec de bons rendements et de manière diastéréosélective, par un procédé domino. Ces différents composés présentent le motif tricyclique ABC, caractéristique de la structure des strigolactones, hormones jouant un rôle fondamental dans le processus de germination des plantes / The γ-butyrolactone scaffold is a widespread naturally occurring motif, present in numerous compounds possessing biological activities. In this context, paraconic acids (bearing a carboxylic acid function at the position β to the carbonyl), constitute an important group of γ-butyrolactones that both display antitumor and antibiotic activities, but also represent relevant building blocks for the synthesis of diverse pharmacologically active compounds. However, the multicomponent synthesis of γ-butyrolactones has been only scarcely reported so far. Considering the selective reactivity of organozinc reagents, it was assumed that a range of 2,3-polysubstituted paraconic acids should be synthesized from an organozinc reagent, a carbonyl compound and a Michael acceptor through a metallo-catalyzed domino reaction involving the formation of three single bonds. This reaction allowed for the access to a wide range of 2,3-polysubstituted paraconic acids characterized by an unprecedented functionalized benzyl side chain in position β of the carbonyl. A study devoted to the elucidation of the mechanism of this reaction was carried out. The in vitro antitumor activity of a representative set of these compounds has been evaluated against various cancer cell lines (KB, HCT116, MCF7, HL60). These tests permitted to highlight a lead molecule, which was submitted to additional tests (PC3, SK-OV3, MCF7R, HL60R, MRC5, EPC, mechanism of action). IC50 between 0.6 and 6 µM have been measured for this compound. An extension of the reaction to ortho-bisubstituted compounds allowed for the domino diastereoselective synthesis of a range of ortho-condensed tricyclic lactones with good yields. Those compounds exhibit the tricyclic ABC pattern of strigolactones, hormones playing a fundamental role in the germination process of plants
40

Efficient and Selective Synthesis of Multifunctional Organoboron Compounds Promoted by Cu-Based N-Heterocyclic Carbene Complexes

Jang, Hwanjong January 2016 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1. We have developed a single-vessel catalytic protocol for double protoboryl additions to terminal alkynes with B2(pin)2 promoted by Cu complex derived from chiral N-heterocyclic carbene (NHC), to achieve enantiomerically enriched versatile vicinal diborons. Since an alkenyl(pinacolato)boron, which was in situ generated by the first protoboration of a terminal alkyne, can serve as an effective substrate for the second protoboration (alkenylboron can allow delocalization of π electrons of olefin to a partially vacant p orbital on boron), single-vessel catalytic process with 2 equiv. of B2(pin)2 in the presence of sulfonate-bearing chiral NHC–Cu complex, affords enantiomerically enriched 1,2-diborons in up to 93% yield and 97.5:2.5 enantiomeric ratio (e.r.). Site-selective Pd-catalyzed cross-coupling with alkenyl bromide shows the versatility of the resulting diboron compounds, which delivers the coupling product efficiently. Interestingly, only the less hindered, primary C–B bond on vicinal diboron compound participates in the cross coupling. Chapter 2. Cu-catalyzed protocol for selective formation of α-alkenylborons has been demonstrated. With achiral NHC–Cu complex, readily prepared from commercially available imidazolinium salt, various terminal alkynes are converted to internal alkenylborons in up to 93% yield with high to exclusive α selectivity. Propargyl ethers, amides and aryl alkynes are proved to be suitable substrates. Utility of α-alkenylborons is demonstrated by conversion to methyl ketone and synthesis of cyclic alkenylboron compound. In addition, when Cu complex bearing a stronger electron-donating NHC is used, the site selectivity of protoboration reaction becomes reversed, which delivers the alternative isomer, β-alkenylboron efficiently. By altering the steric and electronic nature of NHC, site selectivity is dramatically changed. Mechanistic basis for site selectivity is presented. Chapter 3. Efficient and selective protocol for synthesis of enantiomerically enriched silylborons is described. In the presence of achiral NHC–Cu complex, site- and stereoselective protosilyl additions to terminal alkynes afford a wide range of alkyl- and aryl-substituted (E)-β-alkenylsilanes. Chiral monodentate NHC−Cu complex promotes enantioselective protoboration of alkyl- or alkenyl-bearing alkenylsilanes, delivering vicinal borosilanes with up to 96.5:3.5 e.r. When an alkene bearing both silyl and aryl groups is utilized, on the other hand, geminal silylboron is obtained with high enantio- (93:7–98.5:1.5 e.r.) and site selectivity (up to >98% geminal). In this case, we have reasoned that the electronic attribute of aryl unit is more dominant than the silyl group to control site selectivity. To demonstrate the utility of the Cu-catalyzed transformation, we have illustrated the formal synthesis of bruguierol A, natural product active against Gram-positive and also Gram-negative bacteria. The key intermediate geminal borosilane is provided by sequential NHC–Cu-catalyzed protosilylation and protoboration of terminal alkyne in 77% overall yield with 97.5:2.5 e.r. and 97% site selectivity. Additionally, stereochemical models to account for levels and trends in site- and enantioselectivity are proposed. Chapter 4. New methods for enantioselective protonation of 2-B(pin)-bearing allylcopper, which is in situ generated by site-selective Cu–B addition to 1,1-disubstituted allene, are presented. Transformations are promoted by a chiral NHC–Cu complex, affording an alkenylboron containing α-carbon stereogenic center. Enantiomerically enriched aryl-, heteroaryl- and silyl-bearing alkenylborons are generated in high yield (up to 98%) and selectivities (up to >98% site selectivity and 96.5:3.5 e.r.). To explore the utility of enantiomerically enriched alkenylborons, we have developed Cu-catalyzed enantioselective allylic alkenyl addition to allylic phosphate. A chiral NHC–Cu complex promotes the allylic substitution of enantiomerically enriched alkenylboronic acid with ally phosphate to deliver 1,4-diene in 62% yield with 96:4 d.r. (>98% stereoselectivity). Chapter 5. We have developed a single-vessel, multicomponent process to synthesize N-bearing quaternary carbon stereogenic centers with exceptional diastereo- (>98:2 d.r. for all cases) and high enantioselectivity (88:12 to >99:1 e.r. except one case). Especially, protecting group-free ketoimine (“N–H” ketoimine), which can be prepared by alkylation of a readily available nitrile, has been utilized for the study. The transformation of “N–H” ketoimine is very useful because the obtained amine has no protecting group, which allows us to avoid the deprotection step as well as to be able to choose appropriate protecting group for subsequent chemical reactions. By oxidation of α-tertiary carbamine with NaBO3, β-amino ketones (Mannich reaction product) are obtained in up to 83% yield. A stereochemical model to account for the level of diastereo- and enantioselectivity are presented using DFT calculations. To show the utility of the present method, we have synthesized a medicinally active compound, which was studied for Alzheimer’s disease. The Cu-catalyzed protocol delivers the core structure of the target molecule with exclusive diastereo- and enantioselectivity (>98:2 d.r. and 99.5:0.5 e.r.). / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Page generated in 0.0882 seconds