Spelling suggestions: "subject:"multidescrição"" "subject:"autodescrição""
1 |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB / Partially supervised multi-view machine learning for relevance feedback in WEB information retrievalSoares, Matheus Victor Brum 28 May 2009 (has links)
Atualmente, o meio mais comum de busca de informações é a WEB. Assim, é importante procurar métodos eficientes para recuperar essa informação. As máquinas de busca na WEB usualmente utilizam palavras-chaves para expressar uma busca. Porém, não é trivial caracterizar a informação desejada. Usuários diferentes com necessidades diferentes podem estar interessados em informações relacionadas, mas distintas, ao realizar a mesma busca. O processo de realimentação de relevância torna possível a participação ativa do usuário no processo de busca. A idéia geral desse processo consiste em, após o usuário realizar uma busca na WEB permitir que indique, dentre os sites encontrados, quais deles considera relevantes e não relevantes. A opinião do usuário pode então ser considerada para reordenar os dados, de forma que os sites relevantes para o usuário sejam retornados mais facilmente. Nesse contexto, e considerando que, na grande maioria dos casos, uma consulta retorna um número muito grande de sites WEB que a satisfazem, das quais o usuário é responsável por indicar um pequeno número de sites relevantes e não relevantes, tem-se o cenário ideal para utilizar aprendizado parcialmente supervisionado, pois essa classe de algoritmos de aprendizado requer um número pequeno de exemplos rotulados e um grande número de exemplos não-rotulados. Assim, partindo da hipótese que a utilização de aprendizado parcialmente supervisionado é apropriada para induzir um classificador que pode ser utilizado como um filtro de realimentação de relevância para buscas na WEB, o objetivo deste trabalho consiste em explorar algoritmos de aprendizado parcialmente supervisionado, mais especificamente, aqueles que utilizam multidescrição de dados, para auxiliar na recuperação de sites na WEB. Para avaliar esta hipótese foi projetada e desenvolvida uma ferramenta denominada C-SEARCH que realiza esta reordenação dos sites a partir da indicação do usuário. Experimentos mostram que, em casos que buscas genéricas, que o resultado possui um bom diferencial entre sites relevantes e irrelevantes, o sistema consegue obter melhores resultados para o usuário / As nowadays the WEB is the most common source of information, it is very important to find reliable and efficient methods to retrieve this information. However, the WEB is a highly volatile and heterogeneous information source, thus keyword based querying may not be the best approach when few information is given. This is due to the fact that different users with different needs may want distinct information, although related to the same keyword query. The process of relevance feedback makes it possible for the user to interact actively with the search engine. The main idea is that after performing an initial search in the WEB, the process enables the user to indicate, among the retrieved sites, a small number of the ones considered relevant or irrelevant according with his/her required information. The users preferences can then be used to rearrange sites returned in the initial search, so that relevant sites are ranked first. As in most cases a search returns a large amount of WEB sites which fits the keyword query, this is an ideal situation to use partially supervised machine learning algorithms. This kind of learning algorithms require a small number of labeled examples, and a large number of unlabeled examples. Thus, based on the assumption that the use of partially supervised learning is appropriate to induce a classifier that can be used as a filter for relevance feedback in WEB information retrieval, the aim of this work is to explore the use of a partially supervised machine learning algorithm, more specifically, one that uses multi-description data, in order to assist the WEB search. To this end, a computational tool called C-SEARCH, which performs the reordering of the searched results using the users feedback, has been implemented. Experimental results show that in cases where the keyword query is generic and there is a clear distinction between relevant and irrelevant sites, which is recognized by the user, the system can achieve good results
|
2 |
Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB / Partially supervised multi-view machine learning for relevance feedback in WEB information retrievalMatheus Victor Brum Soares 28 May 2009 (has links)
Atualmente, o meio mais comum de busca de informações é a WEB. Assim, é importante procurar métodos eficientes para recuperar essa informação. As máquinas de busca na WEB usualmente utilizam palavras-chaves para expressar uma busca. Porém, não é trivial caracterizar a informação desejada. Usuários diferentes com necessidades diferentes podem estar interessados em informações relacionadas, mas distintas, ao realizar a mesma busca. O processo de realimentação de relevância torna possível a participação ativa do usuário no processo de busca. A idéia geral desse processo consiste em, após o usuário realizar uma busca na WEB permitir que indique, dentre os sites encontrados, quais deles considera relevantes e não relevantes. A opinião do usuário pode então ser considerada para reordenar os dados, de forma que os sites relevantes para o usuário sejam retornados mais facilmente. Nesse contexto, e considerando que, na grande maioria dos casos, uma consulta retorna um número muito grande de sites WEB que a satisfazem, das quais o usuário é responsável por indicar um pequeno número de sites relevantes e não relevantes, tem-se o cenário ideal para utilizar aprendizado parcialmente supervisionado, pois essa classe de algoritmos de aprendizado requer um número pequeno de exemplos rotulados e um grande número de exemplos não-rotulados. Assim, partindo da hipótese que a utilização de aprendizado parcialmente supervisionado é apropriada para induzir um classificador que pode ser utilizado como um filtro de realimentação de relevância para buscas na WEB, o objetivo deste trabalho consiste em explorar algoritmos de aprendizado parcialmente supervisionado, mais especificamente, aqueles que utilizam multidescrição de dados, para auxiliar na recuperação de sites na WEB. Para avaliar esta hipótese foi projetada e desenvolvida uma ferramenta denominada C-SEARCH que realiza esta reordenação dos sites a partir da indicação do usuário. Experimentos mostram que, em casos que buscas genéricas, que o resultado possui um bom diferencial entre sites relevantes e irrelevantes, o sistema consegue obter melhores resultados para o usuário / As nowadays the WEB is the most common source of information, it is very important to find reliable and efficient methods to retrieve this information. However, the WEB is a highly volatile and heterogeneous information source, thus keyword based querying may not be the best approach when few information is given. This is due to the fact that different users with different needs may want distinct information, although related to the same keyword query. The process of relevance feedback makes it possible for the user to interact actively with the search engine. The main idea is that after performing an initial search in the WEB, the process enables the user to indicate, among the retrieved sites, a small number of the ones considered relevant or irrelevant according with his/her required information. The users preferences can then be used to rearrange sites returned in the initial search, so that relevant sites are ranked first. As in most cases a search returns a large amount of WEB sites which fits the keyword query, this is an ideal situation to use partially supervised machine learning algorithms. This kind of learning algorithms require a small number of labeled examples, and a large number of unlabeled examples. Thus, based on the assumption that the use of partially supervised learning is appropriate to induce a classifier that can be used as a filter for relevance feedback in WEB information retrieval, the aim of this work is to explore the use of a partially supervised machine learning algorithm, more specifically, one that uses multi-description data, in order to assist the WEB search. To this end, a computational tool called C-SEARCH, which performs the reordering of the searched results using the users feedback, has been implemented. Experimental results show that in cases where the keyword query is generic and there is a clear distinction between relevant and irrelevant sites, which is recognized by the user, the system can achieve good results
|
3 |
Construções de comitês de classificadores multirrótulos no aprendizado semissupervisionado multidescriçãoSilva, Wilamis Kleiton Nunes da 18 August 2017 (has links)
Submitted by Lara Oliveira (lara@ufersa.edu.br) on 2017-09-19T21:25:54Z
No. of bitstreams: 1
WilamisKNS_DISSERT.pdf: 2959360 bytes, checksum: f4e2b25f85638d49d61b7b5e7415d3fc (MD5) / Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-10-27T13:05:12Z (GMT) No. of bitstreams: 1
WilamisKNS_DISSERT.pdf: 2959360 bytes, checksum: f4e2b25f85638d49d61b7b5e7415d3fc (MD5) / Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-10-27T13:08:52Z (GMT) No. of bitstreams: 1
WilamisKNS_DISSERT.pdf: 2959360 bytes, checksum: f4e2b25f85638d49d61b7b5e7415d3fc (MD5) / Made available in DSpace on 2017-10-27T13:09:10Z (GMT). No. of bitstreams: 1
WilamisKNS_DISSERT.pdf: 2959360 bytes, checksum: f4e2b25f85638d49d61b7b5e7415d3fc (MD5)
Previous issue date: 2017-08-18 / Multi-label problems have become increasingly common, for a label can be attributed to more than one instance, being called multi-label classification problems. Among the di_erent multilabel classification methods we can mention: BR (Binary Relevance), LP (Label Powerset) And RAkEL (RAndom k labELsets). Such methods have been recognized as methods for transforming the Problem, since they consist of turning the multi-label problem into several problems of traditional classification (mono label). However, the adoption of Classificatory committees in multi-label classification problems has still been new-found so far, With a great field to be explored for conducting researches as well. This work aims of doing a study on the construction of multilabel classifiers committees Built through the application of multi- description semisupervised learning techniques, in order to verify if application of this type of learning in the construction of committees results in improvements linked to the results. The committees of classifiers used in the experiments were Bagging, Boosting and Stacking as methods of transformation of the problems used were the BR, LP and Rakel methods and for classification multi-label multi-label semi-supervised multi-description was used Co-Training. At the end of the experimental analyzes, it was verified that the use of the semi-supervised approach presented satisfactory results, since the two approaches presented similar results / São cada vez mais comum problemas multirrótulos onde um rótulo pode ser atribuído a mais de uma instância, sendo chamados de problemas de classificação multirrótulo. Dentre os diferentes métodos de classificação multirrótulo, podemos citar os métodos BR (Binary Relevance), LP (Label Powerset) e RAkEL (RAndom k-labELsets). Tais métodos são ditos métodos de transformação do problema, pois consistem em transformar o problema multirrótulo em vários problemas de classificação tradicional (monorrótulo).A adoção de comitês de classificadores em problemas de classificação multirrótulo ainda é algo muito recente, com muito a ser explorado para a realização de pesquisas. O objetivo deste trabalho é realizar um estudo sobre a construção de comitês de classificadores multirrótulos construídos através da aplicação das técnicas de aprendizado semissupervisionado multidescrição, a fim de verificar se aplicação desse tipo de aprendizado na construção de comitês acarreta melhorias nos resultados. Os comitês de classificadores utilizados nos experimentos foram o Bagging, Boosting e Stacking como métodos de transformação do problemas foram utilizados os métodos BR, LP e Rakel e para a classificação multirrótulo semissupervisionada multidescrição foi utilizado o Co-Training. Ao fim das análises experimentais verificou-se que a utilização da abordagem semissupervisionado apresentou resultados satisfatórios, uma vez que as duas abordagens supervisionada e semissupervisionada utilizadas no trabalho apresentaram resultados semelhantes / 2017-09-19
|
4 |
Aprendizado semissupervisionado multidescrição em classificação de textos / Multi-view semi-supervised learning in text classificationBraga, Ígor Assis 23 April 2010 (has links)
Algoritmos de aprendizado semissupervisionado aprendem a partir de uma combinação de dados rotulados e não rotulados. Assim, eles podem ser aplicados em domínios em que poucos exemplos rotulados e uma vasta quantidade de exemplos não rotulados estão disponíveis. Além disso, os algoritmos semissupervisionados podem atingir um desempenho superior aos algoritmos supervisionados treinados nos mesmos poucos exemplos rotulados. Uma poderosa abordagem ao aprendizado semissupervisionado, denominada aprendizado multidescrição, pode ser usada sempre que os exemplos de treinamento são descritos por dois ou mais conjuntos de atributos disjuntos. A classificação de textos é um domínio de aplicação no qual algoritmos semissupervisionados vêm obtendo sucesso. No entanto, o aprendizado semissupervisionado multidescrição ainda não foi bem explorado nesse domínio dadas as diversas maneiras possíveis de se descrever bases de textos. O objetivo neste trabalho é analisar o desempenho de algoritmos semissupervisionados multidescrição na classificação de textos, usando unigramas e bigramas para compor duas descrições distintas de documentos textuais. Assim, é considerado inicialmente o difundido algoritmo multidescrição CO-TRAINING, para o qual são propostas modificações a fim de se tratar o problema dos pontos de contenção. É também proposto o algoritmo COAL, o qual pode melhorar ainda mais o algoritmo CO-TRAINING pela incorporação de aprendizado ativo como uma maneira de tratar pontos de contenção. Uma ampla avaliação experimental desses algoritmos foi conduzida em bases de textos reais. Os resultados mostram que o algoritmo COAL, usando unigramas como uma descrição das bases textuais e bigramas como uma outra descrição, atinge um desempenho significativamente melhor que um algoritmo semissupervisionado monodescrição. Levando em consideração os bons resultados obtidos por COAL, conclui-se que o uso de unigramas e bigramas como duas descrições distintas de bases de textos pode ser bastante compensador / Semi-supervised learning algorithms learn from a combination of both labeled and unlabeled data. Thus, they can be applied in domains where few labeled examples and a vast amount of unlabeled examples are available. Furthermore, semi-supervised learning algorithms may achieve a better performance than supervised learning algorithms trained on the same few labeled examples. A powerful approach to semi-supervised learning, called multi-view learning, can be used whenever the training examples are described by two or more disjoint sets of attributes. Text classification is a domain in which semi-supervised learning algorithms have shown some success. However, multi-view semi-supervised learning has not yet been well explored in this domain despite the possibility of describing textual documents in a myriad of ways. The aim of this work is to analyze the effectiveness of multi-view semi-supervised learning in text classification using unigrams and bigrams as two distinct descriptions of text documents. To this end, we initially consider the widely adopted CO-TRAINING multi-view algorithm and propose some modifications to it in order to deal with the problem of contention points. We also propose the COAL algorithm, which further improves CO-TRAINING by incorporating active learning as a way of dealing with contention points. A thorough experimental evaluation of these algorithms was conducted on real text data sets. The results show that the COAL algorithm, using unigrams as one description of text documents and bigrams as another description, achieves significantly better performance than a single-view semi-supervised algorithm. Taking into account the good results obtained by COAL, we conclude that the use of unigrams and bigrams as two distinct descriptions of text documents can be very effective
|
5 |
Aprendizado semissupervisionado multidescrição em classificação de textos / Multi-view semi-supervised learning in text classificationÍgor Assis Braga 23 April 2010 (has links)
Algoritmos de aprendizado semissupervisionado aprendem a partir de uma combinação de dados rotulados e não rotulados. Assim, eles podem ser aplicados em domínios em que poucos exemplos rotulados e uma vasta quantidade de exemplos não rotulados estão disponíveis. Além disso, os algoritmos semissupervisionados podem atingir um desempenho superior aos algoritmos supervisionados treinados nos mesmos poucos exemplos rotulados. Uma poderosa abordagem ao aprendizado semissupervisionado, denominada aprendizado multidescrição, pode ser usada sempre que os exemplos de treinamento são descritos por dois ou mais conjuntos de atributos disjuntos. A classificação de textos é um domínio de aplicação no qual algoritmos semissupervisionados vêm obtendo sucesso. No entanto, o aprendizado semissupervisionado multidescrição ainda não foi bem explorado nesse domínio dadas as diversas maneiras possíveis de se descrever bases de textos. O objetivo neste trabalho é analisar o desempenho de algoritmos semissupervisionados multidescrição na classificação de textos, usando unigramas e bigramas para compor duas descrições distintas de documentos textuais. Assim, é considerado inicialmente o difundido algoritmo multidescrição CO-TRAINING, para o qual são propostas modificações a fim de se tratar o problema dos pontos de contenção. É também proposto o algoritmo COAL, o qual pode melhorar ainda mais o algoritmo CO-TRAINING pela incorporação de aprendizado ativo como uma maneira de tratar pontos de contenção. Uma ampla avaliação experimental desses algoritmos foi conduzida em bases de textos reais. Os resultados mostram que o algoritmo COAL, usando unigramas como uma descrição das bases textuais e bigramas como uma outra descrição, atinge um desempenho significativamente melhor que um algoritmo semissupervisionado monodescrição. Levando em consideração os bons resultados obtidos por COAL, conclui-se que o uso de unigramas e bigramas como duas descrições distintas de bases de textos pode ser bastante compensador / Semi-supervised learning algorithms learn from a combination of both labeled and unlabeled data. Thus, they can be applied in domains where few labeled examples and a vast amount of unlabeled examples are available. Furthermore, semi-supervised learning algorithms may achieve a better performance than supervised learning algorithms trained on the same few labeled examples. A powerful approach to semi-supervised learning, called multi-view learning, can be used whenever the training examples are described by two or more disjoint sets of attributes. Text classification is a domain in which semi-supervised learning algorithms have shown some success. However, multi-view semi-supervised learning has not yet been well explored in this domain despite the possibility of describing textual documents in a myriad of ways. The aim of this work is to analyze the effectiveness of multi-view semi-supervised learning in text classification using unigrams and bigrams as two distinct descriptions of text documents. To this end, we initially consider the widely adopted CO-TRAINING multi-view algorithm and propose some modifications to it in order to deal with the problem of contention points. We also propose the COAL algorithm, which further improves CO-TRAINING by incorporating active learning as a way of dealing with contention points. A thorough experimental evaluation of these algorithms was conducted on real text data sets. The results show that the COAL algorithm, using unigrams as one description of text documents and bigrams as another description, achieves significantly better performance than a single-view semi-supervised algorithm. Taking into account the good results obtained by COAL, we conclude that the use of unigrams and bigrams as two distinct descriptions of text documents can be very effective
|
Page generated in 0.0316 seconds