• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of novel efflux transport inhibitor for the improvement of drug delivery through epithelial cell monolayer

Sonawane, Amit January 2015 (has links)
Blood-brain barrier (BBB) is a unique membranous barrier, which segregates brain from the circulating blood. It works as a physical and metabolic barrier between the central nervous system (CNS) and periphery. In mammals, endothelial cells were shown to be of BBB and are characterized by the tight junctions along with efflux system which are responsible for the restriction of movement of molecules within the cells. Efflux system consists of multidrug resistance proteins such as P-glycoprotein (P-gp). P-gp removes substances out back from the brain to the blood before they reach to the brain. So the barrier is impermeable to many compounds such as amino acids, ions, small peptides and proteins, making it the most challenging factor for the development of new drugs for targeting CNS. Curcumin is a bioactive compound that has a number of health promoting benefits such as anti-inflammatory, anticancer, anti-oxidant agent; as well as a role in neurodegenerative diseases, but low oral bioavailability is the major limiting factor. Low water solubility and rapid metabolism are the two important factors responsible for poor bioavailability of curcumin. Galaxolide is a musk compound and previously known for the bioaccumulation of toxic components in the aquatic animals by interference with the activity of multidrug/multixenobiotic resistance efflux transporters (MDR/MXR). The bioavailability of curcumin can be enhanced when administered with galaxolide. This study was carried out to investigate the effect of galaxolide on the permeation of curcumin through the epithelial cell monolayers. MDCKII-MDR1 cell monolayer is used an in vitro blood-brain barrier model while Caco-2 monolayer is used as an in vitro intestinal model, which also expresses the P-glycoprotein. The curcumin and galaxolide were separately solubilised in the DMSO and used in combination to perform permeation study, to determine the effect of galaxolide on curcumin permeation through epithelial cell monolayers. The galaxolide shows an efflux protein inhibition activity and this activity was used to enhance permeation of curcumin through the Caco-2 monolayer. In summary, galaxolide is a novel permeation enhancer molecule, which can be used for the improvement of drug delivery of other bioactive compounds in future.
2

Evaluation of Novel Efflux Transport Inhibitor for the improvement of drug delivery through epithelial cell monolayer

Sonawane, Amit January 2015 (has links)
Blood-brain barrier (BBB) is a unique membranous barrier, which segregates brain from the circulating blood. It works as a physical and metabolic barrier between the central nervous system (CNS) and periphery. In mammals, endothelial cells were shown to be of BBB and are characterized by the tight junctions along with efflux system which are responsible for the restriction of movement of molecules within the cells. Efflux system consists of multidrug resistance proteins such as P-glycoprotein (P-gp). P-gp removes substances out back from the brain to the blood before they reach to the brain. So the barrier is impermeable to many compounds such as amino acids, ions, small peptides and proteins, making it the most challenging factor for the development of new drugs for targeting CNS. Curcumin is a bioactive compound that has a number of health promoting benefits such as anti-inflammatory, anticancer, anti-oxidant agent; as well as a role in neurodegenerative diseases, but low oral bioavailability is the major limiting factor. Low water solubility and rapid metabolism are the two important factors responsible for poor bioavailability of curcumin. Galaxolide is a musk compound and previously known for the bioaccumulation of toxic components in the aquatic animals by interference with the activity of multidrug/multixenobiotic resistance efflux transporters (MDR/MXR). The bioavailability of curcumin can be enhanced when administered with galaxolide. This study was carried out to investigate the effect of galaxolide on the permeation of curcumin through the epithelial cell monolayers. MDCKII-MDR1 cell monolayer is used an in vitro blood-brain barrier model while Caco-2 monolayer is used as an in vitro intestinal model, which also expresses the P-glycoprotein. The curcumin and galaxolide were separately solubilised in the DMSO and used in combination to perform permeation study, to determine the effect of galaxolide on curcumin permeation through epithelial cell monolayers. The galaxolide shows an efflux protein inhibition activity and this activity was used to enhance permeation of curcumin through the Caco-2 monolayer. In summary, galaxolide is a novel permeation enhancer molecule, which can be used for the improvement of drug delivery of other bioactive compounds in future. / Department of Social Welfare, Govt. of Maharashtra (India)
3

Überwindung der P-Glykoprotein (MDR1)-abhängigen Multidrugresistenz mittels RNA-Interferenz

Stege, Alexandra Eva 11 January 2007 (has links)
P-Glykoprotein als Produkt des MDR1-Gens stellt einen gut untersuchten Mediator der Multidrugresistenz (MDR) in humanen Malignomen dar. Die Überexpression dieses ABC-Transporters steht in Korrelation zu einer erniedrigten Tumorremission und einer kürzeren Überlebensrate der Patienten. Bisherige Versuche, das Protein über niedermolekulare Substanzen (MDR-Modulatoren) zu inhibieren, vermochten in allen bisherigen klinischen Studien nicht zu überzeugen, so daß diese bis heute keinen Eingang in Standardtherapieschemata gefunden haben. Ziel dieser Arbeit war es, mittels RNA-Interferenz Strategien die Expression von MDR1 zu hemmen und eine Reversion der zellulären Chemoresistenz sowohl im Zellkultur- als auch im Tiermodell zu erreichen. Für die in vitro Untersuchungen an drei humanen multidrug-resistenten Karzinomzellinien wurden verschiedene siRNA (short interfering) Duplexe und shRNA (short hairpin)-exprimierende Vektoren gegen die MDR1 mRNA entwickelt. Die Behandlung der Zellen mit siRNAs führte zu einer bis zu 91 %igen Inhibition der MDR1 mRNA-Expression und zu einer Sensitivierung der Zellen gegenüber dem Anthrazyklin um 89 %. Diese Effekte konnte über einen Zeitraum von drei bis fünf Tagen aufrechterhalten werden. Die stabile Expression von anti-MDR1 shRNAs führte in zwei der untersuchten Zellmodelle zu einer dauerhaften und kompletten Überwindung des MDR1-abhängigen Resistenzphänotyps. Im Mausmodell konnte durch intratumorale Applikation des anti-MDR1 shRNA-kodierenden Vektors mittels low-volume Jet-Injektion eine komplette Reversion der MDR1-Überexpression sowie eine Wiederherstellung der Chemosensitivität gegenüber Doxorubicin in dem resistenten Tumormodell erreicht werden. Die Effizienz der kombinierten Gen- und Chemotherapie wird durch die Verminderung des in vivo Tumorwachstums auf das Volumen des von der sensiblen Zellinien-abgeleiteten Tumors reflektiert. / Multidrug resistance (MDR) is the major cause of failure of effective chemotherapeutic treatment of disseminated neoplasms. The "classical" MDR phenotype of human malignancies is mediated by drug extrusion by the adenosine triphosphate binding cassette (ABC)-transporter P-glycoprotein (MDR1/P-gp). For stable reversal of "classical" MDR in three human cancer cell lines by RNA interference (RNAi) technology, two small interfering RNA (siRNA) constructs and four H1-RNA gene promoter-driven expression vectors encoding anti-MDR1/P-gp short hairpin RNA (shRNA) molecules were constructed. In all cellular systems, siRNAs could specifically inhibit MDR1 expression up to 91% at the mRNA and protein levels. Resistance against daunorubicin was decreased to a maximum of 89%. The introduction of anti-MDR1/P-gp shRNA expression vectors leads in two of the three human cancer cell lines to a complete reversion of the MDR phenotype. The reversal of MDR was accompanied by a complete suppression of MDR1/P-gp expression on mRNA and protein level, and by a considerable increased intracellular anthracyline accumulation in the anti-MDR1/P-gp shRNA-treated cells. In a mouse xenograft model a complete in vivo restoration of MDR1 overexpression and chemosensitivity to doxorubicin could be obtained by intratumorally jet-injected anti-MDR1 shRNA in a multidrug resistant human cancer tumor model.

Page generated in 0.0895 seconds