• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis And Design Of Image And Video Encryption Algorithms

Yekkala, Anil Kumar 12 1900 (has links)
The rapid growth in multimedia based Internet systems and applications like video telephony, video on demand, network based DVD recorders and IP television has created a substantial need for multimedia security. One of the important requirements for multimedia security is transmission of the digital multimedia content in a secure manner using encryption for protecting it from eavesdropping. The simplest way of encrypting multimedia content is to consider the two-dimensional/three-dimensional image/video stream as an one-dimensional stream and to encrypt the entire content using standard block ciphers like AES, DES, IDEA or RC4 or using a stream cipher. The method of encrypting the entire multimedia content is considered as a naive encryption approach. Even though the naive encryption approach provides the desired security requirements, it imposes a large overhead on the multimedia codex. This is due to the size of the multimedia content, and also due to real time requirements of transmission and rendering. Hence, lightweight encryption schemes are gaining popularity for multimedia encryption. Lightweight Encryption schemes are based on the principle “Encrypt minimal and induce maximum noise". Lightweight encryption schemes are designed to take the structure of the multimedia content into consideration. In our work we analyze some of the existing lightweight encryption schemes for digital images and video. The analysis is done based on the amount of security, scalability and effect on compression. A detailed study of some of the existing lightweight encryption schemes is also done by designing cryptanalysis schemes. The cryptanalysis schemes are designed using image noise clearing algorithms and pixel prediction techniques. The designed cryptanalysis schemes reduce the amount of noise introduced by the corresponding lightweight encryption schemes considerably. Based on our analysis of existing lightweight encryption schemes, we propose a set of more robust lightweight encryption schemes for images and video. The proposed lightweight encryption schemes are secure, scalable, and do not degrade the compression achieved. In our work, we also propose a few enhancements to JPEG image compression for achieving more compression, without compromising on the quality. The enhancements to the JPEG compression are extensions of the pixel prediction techniques used in the proposed cryptanalysis schemes.
2

Image Structures For Steganalysis And Encryption

Suresh, V 04 1900 (has links) (PDF)
In this work we study two aspects of image security: improper usage and illegal access of images. In the first part we present our results on steganalysis – protection against improper usage of images. In the second part we present our results on image encryption – protection against illegal access of images. Steganography is the collective name for methodologies that allow the creation of invisible –hence secret– channels for information transfer. Steganalysis, the counter to steganography, is a collection of approaches that attempt to detect and quantify the presence of hidden messages in cover media. First we present our studies on stego-images using features developed for data stream classification towards making some qualitative assessments about the effect of steganography on the lower order bit planes(LSB) of images. These features are effective in classifying different data streams. Using these features, we study the randomness properties of image and stego-image LSB streams and observe that data stream analysis techniques are inadequate for steganalysis purposes. This provides motivation to arrive at steganalytic techniques that go beyond the LSB properties. We then present our steganalytic approach which takes into account such properties. In one such approach, we perform steganalysis from the point of view of quantifying the effect of perturbations caused by mild image processing operations–zoom-in/out, rotation, distortions–on stego-images. We show that this approach works both in detecting and estimating the presence of stego-contents for a particularly difficult steganographic technique known as LSB matching steganography. Next, we present our results on our image encryption techniques. Encryption approaches which are used in the context of text data are usually unsuited for the purposes of encrypting images(and multimedia objects) in general. The reasons are: unlike text, the volume to be encrypted could be huge for images and leads to increased computational requirements; encryption used for text renders images incompressible thereby resulting in poor use of bandwidth. These issues are overcome by designing image encryption approaches that obfuscate the image by intelligently re-ordering the pixels or encrypt only parts of a given image in attempts to render them imperceptible. The obfuscated image or the partially encrypted image is still amenable to compression. Efficient image encryption schemes ensure that the obfuscation is not compromised by the inherent correlations present in the image. Also they ensure that the unencrypted portions of the image do not provide information about the encrypted parts. In this work we present two approaches for efficient image encryption. First, we utilize the correlation preserving properties of the Hilbert space-filling-curves to reorder images in such a way that the image is obfuscated perceptually. This process does not compromise on the compressibility of the output image. We show experimentally that our approach leads to both perceptual security and perceptual encryption. We then show that the space-filling curve based approach also leads to more efficient partial encryption of images wherein only the salient parts of the image are encrypted thereby reducing the encryption load. In our second approach, we show that Singular Value Decomposition(SVD) of images is useful from the point of image encryption by way of mismatching the unitary matrices resulting from the decomposition of images. It is seen that the images that result due to the mismatching operations are perceptually secure.

Page generated in 0.0729 seconds