• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 58
  • 19
  • 12
  • 11
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 310
  • 74
  • 69
  • 49
  • 43
  • 39
  • 35
  • 34
  • 34
  • 33
  • 31
  • 29
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

An Integrative Overview of the Open Literature's Empirical Data on In-tunnel Radiowave Propagation's Power Loss

Li, Le January 2006 (has links)
This paper offers a comprehensive and integrative overview of all empirical data available from the open literature on the in-tunnel radiowave-communication channel's power loss characteristics, as a function of the tunnel's cross-sectional shape, cross-sectional size, longitudinal shape, wall materials, presence or absence of vehicular/human traffic, and presence/absence of branches. These data were originally presented in about 50 papers in various journals, conferences, and books.
202

An Integrative Overview of the Open Literature's Empirical Data on In-tunnel Radiowave Propagation's Power Loss

Li, Le January 2006 (has links)
This paper offers a comprehensive and integrative overview of all empirical data available from the open literature on the in-tunnel radiowave-communication channel's power loss characteristics, as a function of the tunnel's cross-sectional shape, cross-sectional size, longitudinal shape, wall materials, presence or absence of vehicular/human traffic, and presence/absence of branches. These data were originally presented in about 50 papers in various journals, conferences, and books.
203

Channel Phase And Data Estimation In Slowly Fading Frequency Nonselective Channels

Zeydan, Engin 01 August 2006 (has links) (PDF)
In coherent receivers, the effect of the multipath fading channel on the transmitted signal must be estimated to recover the transmitted data. In this thesis, the channel phase and data estimation problems are investigated in a transmitted data sequence when the channel is modeled as slowly fading, frequency non-selective channel. Channel phase estimation in a transmitted data sequence is investigated and data estimation is obtained in a symbol-by-symbol MAP receiver that is designed for minimum symbol error probability criterion. The channel phase is quantized in an interval of interest, the trellis diagram is constructed and Viterbi decoding algorithm is applied that uses the phase transition and observation models for channel phase estimation. The optimum coherent and noncoherent detectors for binary orthogonal and PSK signals are derived and the modulated signals in a sequence are detected in symbol-by-symbol MAP receivers.Simulation results have shown that the performance of the receiver with phase estimation is between the performance of the optimum coherent and noncoherent receiver.
204

Direction Finding With Tdoa In A Multipath Land Environment

Basciftci, Cagri Halis 01 September 2007 (has links) (PDF)
In this thesis, the problem of Angle of Arrival estimation of radar signals with Time Difference of Arrival method in an outdoor land multipath environment with limited line of sight is analyzed. A system model is proposed. Effects of system, channel and radar parameters on the Angle of Arrival estimation performance are investigated through Monte Carlo simulations. Improving effect of utilization of diversity on the estimation performance is observed. Performances of the space diversity with noncoherent and selective combining are compared. Finally a realistic scenario is studied and performance of the proposed system is investigated.
205

Low Elevation Target Detection And Direction Finding

Uyar, Gorkem 01 January 2012 (has links) (PDF)
Ground based radars often experience difficulties in target detection and direction finding (DF) applications due to the interference between the direct and surface reflected signals when the targets fly at low altitudes. In this thesis, the phenomena governing the low angle propagation are overviewed and a multipath signal model including the effects of refraction, specular reflection, diffuse reflection, curvature of the earth and antenna polarization is presented. Then, the model is utilized to develop detection and DF algorithms for the targets at low altitudes. The target detection algorithm aims to increase signal-to-noise ratio (SNR) to overcome the effects of signal fading caused by surface reflections. The algorithm is based on diversity combining and the combining weight vector is calculated by maximizing average value of SNR. The technique is compared with Maximum Ratio Combining (MRC) algorithm which is optimal in terms of SNR. In direction finding, it is the height of the target that is explored since the target range information is obtained from the time delay. The target height is estimated by utilizing Maximum Likelihood Estimation (MLE). The performance of our algorithm is compared with that of the technique that is known in the literature as Refined Maximum Likelihood (RML).
206

Adaptive Linearly Constrained Constant Modulus Conjugate Gradient Algorithm with Applications to Multiuser DS-CDMA Detector for Multipath Fading Channel

Wang, Sheng-Meng 04 July 2003 (has links)
The direct-sequence code division multiple access (DS-CDMA) is one of the significant techniques for wireless communication systems with multiple simultaneous transmissions. The main concern of this thesis is to propose a new linearly constrained constant modulus modified conjugate gradient (LCCM-MCG) adaptive filtering algorithm to deal with problem of channel mismatch associated with the multiple access interference (MAI) in DS-CDMA system over multipath fading channel. In fact, the adaptive filtering algorithm based on the CM criterion is known to be very attractive for the case when the channel parameters are not estimated perfectly. The proposed LCCM-MCG algorithm is derived based on the so-called generalized sidelobe canceller (GSC). It has the advantage of having better stability and less computational complexity compared with conventional recursive least-squares (RLS) algorithm, and can be used to achieve desired performance for multiuser RAKE receiver. Moreover, with the MCG algorithm it requires only one recursive iteration per incoming sample data for updating the weight vector, but still maintains performance comparable to the RLS algorithm. From computer simulation results, we show that the proposed LCCM-MCG algorithm has fast convergence rate and could be used to circumvent the effect due to channel mismatch. Also, the performance, in terms of bit error rate (BER), is quite close to the LCCM-RLS algorithm suggested in [18], and is superior to the stochastic gradient descent (SGD) algorithm proposed in [7].
207

Imperfect Channel Knowledge for Interference Avoidance

Lajevardi, Saina Unknown Date
No description available.
208

Contribution to multipath channel estimation in an OFDM modulation context.

Savaux, Vincent 29 November 2013 (has links) (PDF)
In wireless communications systems, the transmission channel between the transmitter and the receiver antennas is one of the main sources of disruption for the signal. The multicarrier modulations, such as the orthogonal frequency division multiplexing (OFDM), are very robust against the multipath effect, and allow to recover the transmitted signal with a low error rate, when they are combined with a channel encoding. The channel estimation then plays a key role in the performance of the communications systems. In this PhD thesis, we study techniques based on least square (LS) and minimum mean square error (MMSE) estimators. The MMSE is optimal, but is much more complex than LS, and requires the a priori knowledge of the second order moment of the channel and the noise. In this presentation, two methods that allow to reach a performance close to the one of LMMSE while getting around its drawback are investigated. In another way, a third part of the presentation investigates the errors of estimation due to the interpolations.
209

Optimization Methods for Active and Passive Localization / Méthodes d'Optimisation pour la Localisation Active et Passive

Garcia, Nil 29 April 2015 (has links)
La localisation active et passive par un réseau de capteurs distribués est un problème rencontré dans différents domaines d’application. En localisation active, telle que la localisation par radar MIMO (Multiple Input Multiple Output), les émetteurs transmettent des signaux qui sont réfléchis par les cibles visées, puis captés par les antennes réceptrices, alors qu’en localisation passive, les capteurs reçoivent des signaux transmis par les cibles elles-mêmes. L’objectif de cette thèse est d’étudier différentes techniques d’optimisation pour la localisation active et passive de haute précision. Dans la première partie de la thèse, on s’intéresse à la localisation active, où de multiples émetteurs illuminent les cibles depuis différentes directions. Les signaux peuvent être émis avec des puissances ou des largeurs de bande différentes. Ces différentes ressources, par nature en général fortement limitées, sont souvent, par défaut, réparties de façon uniforme entre les différents émetteurs. Or, la précision de la localisation dépend de la position des émetteurs, ainsi que des paramètres (les gains notamment) des différents canaux existant entre émetteurs, cibles, et capteurs. En utilisant comme critère d’optimisation la borne de Cramér-Rao sur la précision de la localisation de cibles multiples, nous proposons une méthode fournissant des solutions approchées aux problèmes d’allocation optimale de puissances seules, de largeurs de bande seules, ou au problème d’allocation conjointe de puissances et de largeurs de bande. Ces solutions sont obtenues en minimisant une suite de problèmes convexes. La qualité de ces solutions approchées est évaluée au travers de nombreuses simulations numériques, mais également par la comparaison avec une borne inférieure définie comme la solution d’un problème d’optimisation avec contraintes relaxées, cette borne pouvant être calculée de façon exacte (numériquement). Cette comparaison permet de constater la proximité de la solution approchée fournie par l’algorithme proposé par rapport à la solution théorique. D’autre part, les simulations ont montré que l’allocation de bande joue un rôle plus important dans les performances de localisation que l’allocation de puissance. Dans la seconde partie de la thèse, on considère le cas de la localisation passive de sources multiples dans un environnement multi-trajet. Ce problème se rencontre notamment dans le cadre de la géolocalisation indoor ou outdoor. Dans ce cas de figure, les approches généralement proposées dans la littérature sont basées sur une méthode ad-hoc de réduction d’interférence couplée à une localisation indirecte obtenue par une estimation de paramètres comme les temps d’arrivée des signaux ou les différences de temps d’arrivée, ou la puissance des signaux reçus. Cependant, les performances de ces approches sont limitées, notamment par le fait que la localisation indirecte d’une cible donnée ne prend pas en compte le fait que les signaux reçus par les différents capteurs émanent d’une seule et même source. Dans cette thèse, nous proposons une modélisation parcimonieuse des signaux reçus. Cette modélisation nous permet, en supposant les formes d’onde connues mais les canaux multi-trajets totalement inconnus, de développer une méthode de localisation directe de l’ensemble des cibles. Cette approche exploite certaines propriétés des canaux, qui permettent de séparer les trajets directs des trajets indirects. Un algorithme d’optimisation conique de second ordre est développé afin d’obtenir une décomposition dite atomique optimale, qui permet d’obtenir une localisation de très bonne précision dans des conditions de propagation difficiles, présentant un phénomène de multi-trajet important et/ou une absence de trajets directs. / Active and passive localization employing widely distributed sensors is a problem of interest in various fields. In active localization, such as in MIMO radar, transmitters emit signals that are reflected by the targets and collected by the receive sensors, whereas, in passive localization the sensors collect the signals emitted by the sources themselves. This dissertation studies optimization methods for high precision active and passive localization. In the case of active localization, multiple transmit elements illuminate the targets from different directions. The signals emitted by the transmitters may differ in power and bandwidth. Such resources are often limited and distributed uniformly among the transmitters. However, previous studies based on the well known Crámer-Rao lower bound have shown that the localization accuracy depends on the locations of the transmitters as well as the individual channel gains between different transmitters, targets and receivers. Thus, it is natural to ask whether localization accuracy may be improved by judiciously allocating such limited resources among the transmitters. Using the Crámer-Rao lower bound for target localization of multiple targets as a figure of merit, approximate solutions are proposed to the problems of optimal power, optimal bandwidth and optimal joint power and bandwidth allocation. These solutions are computed by minimizing a sequence of convex problems. The quality of these solutions is assessed through extensive numerical simulations and with the help of a lower-bound that certifies their optimality. Simulation results reveal that bandwidth allocation policies have a stronger impact on performance than power. Passive localization of radio frequency sources over multipath channels is a difficult problem arising in applications such as outdoor or indoor geolocation. Common approaches that combine ad-hoc methods for multipath mitigation with indirect localization relying on intermediary parameters such as time-of-arrivals, time difference of arrivals or received signal strengths, are unsatisfactory. This dissertation models the localization of known waveforms over unknown multipath channels in a sparse framework, and develops a direct approach in which multiple sources are localized jointly, directly from observations obtained at distributed sources. The proposed approach exploits channel properties that enable to distinguish line-of-sight (LOS) from non-LOS signal paths. Theoretical guarantees are established for correct recovery of the sources’ locations by atomic norm minimization. A second-order-cone-based algorithm is developed to produce the optimal atomic decomposition, and it is shown to produce high accuracy location estimates over complex scenes, in which sources are subject to diverse multipath conditions, including lack of LOS.
210

[en] PERFORMANCE OF ADAPTIVE MODULATION IN WCDMA/HSDPA LINKS IN PRESENCE OF MULTIPATH / [pt] DESEMPENHO DA MODULAÇÃO ADAPTATIVA EM ENLACES WCDMA/HSDPA EM PRESENÇA DE MULTIPERCURSOS

MARCELO CORREA RAMOS 12 January 2005 (has links)
[pt] Este trabalho é um estudo sobre um enlace do sistema HSDPA (High Speed Downlink Packet Access), um subsistema do padrão UMTS/WCDMA, desenvolvido para a transmissão de dados em alta velocidade no enlace de descida. Para atingir altas taxas de transmissão, é prevista a utilização, neste sistema, de diversas técnicas avançadas de processamento de sinais, entre elas a modulação adaptativa. O princípio desta técnica é escolher, para cada quadro de bits transmitido, a modulação mais adequada às condições do canal. Através de simulação, o desempenho da modulação adaptativa em enlaces HSDPA foi avaliado em [4], considerando um canal com desvanecimento plano. Estendendo este trabalho, foram introduzidos novos módulos no simulador, de forma a considerar um canal com multipercursos e a utilização de um receptor Rake. A estimação do canal, utilizada na adaptação, é implementada através da análise do sinal recebido e combinado no receptor Rake. O desempenho do enlace foi avaliado em presença de duplo percurso, para diversas situações, através da taxa de erro de pacote e da vazão obtida na transmissão, procurando-se investigar a influência de parâmetros do sistema e da interferência entre os dois percursos nesse desempenho. / [en] This work is a study about the performance of a HSDPA (High Speed Downlink Packet Access) which is a subsystem of UMTS/WCDMA designed for high-speed data transmission in the downlink. In order to achieve high bit rates, the use of advanced signal processing techniques, including adaptive modulation, is specified. This technique consists of choosing, for each transmitted frame, the most efficient modulation according to the channel condition. The performance of adaptive modulation in HSDPA links in a flat fading channel has been evaluated in [4] through simulation. In the present work, new simulation modules have been developed to consider multipath and a Rake receiver. The channel estimation used in the link adaptation is obtained from the received and combined signal at Rake receiver. The link level performance has been evaluated in a double path channel for different situations through packet error rate and throughput. The influence of system parameters and path interference on the performance has been investigated.

Page generated in 0.0637 seconds