• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 58
  • 19
  • 12
  • 11
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 309
  • 73
  • 69
  • 49
  • 43
  • 38
  • 34
  • 34
  • 34
  • 33
  • 31
  • 29
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

A COMPARISON OF ADAPTIVELY EQUALIZED PCM/FM, SOQPSK, AND MULTI-H CPM IN A MULTIPATH CHANNEL

Hill, Terrance, Geoghegan, Mark 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / It is widely recognized that telemetry channels, particularly airborne channels, are afflicted by multipath propagation effects. It has also been shown that adaptive equalization can be highly effective in mitigating these effects. However, numerous other factors influence the behavior of adaptive equalization, and the type of modulation employed is certainly one of these factors. This is particularly true on modulations which exhibit different operating bandwidths. In this paper, we will examine the effect multipath and adaptive equalization for three modulation techniques which are either already in use, or have been proposed, for airborne telemetry.
62

ANALYTICAL AND EXPERIMENTAL CHARACTERIZATION OF SOQPSK AND MULTI-H CPM IN A MULTIPATH CHANNEL

Hill, Terrance J. 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Shaped Offset QPSK (SOQPSK) has been shown to be nearly identical in performance to Feher-patented FQPSK, which is the Advanced Range Telemetry (ATRM) program's Tier I waveform. Multi-h CPM has been selected as the ARTM Tier II waveform, because it offers 50% better spectral efficiency than the Tier I waveform. Both the Tier I and Tier II waveforms must operate in a multipath channel in order to meet the range community's telemetry requirements. This paper presents an analytical and experimental characterization of SOQPSK and Multi-h CPM in the presence of multipath. Quantitative results are presented which demonstrate the relative robustness of the ARTM Tier I and Tier II waveforms, in channels representative of a typical range environment.
63

DYNAMIC BEHAVIOR OF MULTIPATH INTERFERENCE IN ARTM CHANNEL SOUNDING DATA

Davis, Adam Todd 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / Data collected during July 1999 at Edwards EAFB by the Advanced Range Telemetry (ARTM) program is examined to characterize the dynamic behavior of multipath interference in an aeronautical telemetry channel. Multipath fade events are analyzed in the frequency domain to show how these fades appear, evolve, and disappear from the channel. A channel model and examples from the channel sounding data are used to show the dynamic nature of these fade events. The Doppler power spectrum is used to quantify the exact time-varying nature of the multipath fade events. The coherence time, or the amount of time the channel can be viewed as unchanging, is obtained from the Doppler power spectrum and is calculated to be 100 ms in the data sets examined in this paper. This implies that adaptive multipath mitigation techniques must have an adaptation bandwidth of 10 Hz.
64

Wideband Multipath Propagation for Helicopter-to-Ground Telemetry Links

Rice, Michael, Jensen, Michael 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / This paper reports the analysis of L-band channel sounding experiments conducted along the flight line at Cairns Army Airfield, Ft. Rucker, Alabama. Propagation data from multiple antennas on a helicopter to multiple receiving antennas on the ground are used to compute power delay profiles. Analysis of the results reveals delay spreads of the multipath channels between 200 ns and 400 ns, with the longer delay spreads resulting when using a receive antenna with lower gain and higher sidelobe levels. The data also shows that on average, diversity signaling from three aircraft-mounted antennas can lead to gains in signal-to-noise ratio of approximately 13 dB, with the gain dependent on the multipath characteristics observed by the ground antenna.
65

Towards High Quality Video Streaming over Urban Vehicular Networks Using a Location-aware Multipath Scheme

Wang, Renfei 27 June 2012 (has links)
The transmitting of video content over Vehicular Ad Hoc Networks (VANETs) faces a great number of challenges caused by strict QoS (Quality of Service) requirements and highly dynamic network topology. In order to tackle these challenges, multipath forwarding schemes can be regarded as potential solutions. However, route coupling effect and the path length growth severely impair the performance of multipath schemes. In this thesis, the current research status about video streaming over VANETs as well as multipath transmissions are reviewed. With the demand to discover a more suitable solution, we propose the Location-Aware Multipath Video Streaming (LIAITHON+) protocol to address video streaming over urban VANETs. LIAITHON+ uses location information to discover relatively short paths with minimal route coupling effect. The performance results have shown it outperforms the underlying single path solution as well as the node-disjoint multipath solution. In addition, the impact of added redundancy on the multipath solution is investigated through LIAITHON+. According to the results, added redundancy has a different impact depending on the data rate.
66

Enhanced positioning in harsh environments / Förbättrad positionering i svåra miljöer

Glans, Fredrik January 2013 (has links)
Today’s heavy duty vehicles are equipped with safety and comfort systems, e.g. ABS and ESP, which totally or partly take over the vehicle in certain risk situations. When these systems become more and more autonomous more robust positioning is needed. In the right conditions the GPS system provides precise and robust positioning. However, in harsh environments, e.g. dense urban areas and in dense forests, the GPS signals may be affected by multipaths, which means that the signals are reflected on their way from the satellites to the receiver. This can cause large errors in the positioning and thus can give rise to devastating effects for autonomous systems. This thesis evaluate different methods to enhance a low cost GPS in harsh environments, with focus on mitigating multipaths. Mainly there are four different methods: Regular Unscented Kalman filter, probabilistic multipath mitigation, Unscented Kalman filter with vehicle sensor input and probabilistic multipath mitigation with vehicle sensor input. The algorithms will be tested and validated on real data from both dense forest areas and dense urban areas. The results show that the positioning is enhanced, in particular when integrating the vehicle sensors, compared to a low cost GPS.
67

Probability of Bit Error on a Standard IRIG Telemetry Channel Using the Aeronautical Fading Channel Model

Nelson, N. Thomas 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / This paper analyzes the probability of bit error for PCM-FM over a standard IRIG channel subject to multipath interference modeled by the aeronautical fading channel. The aeronautical channel model assumes a mobile transmitter and a stationary receiver and specifies the correlation of the fading component. This model describes fading which is typical of that encountered at military test ranges. An expression for the bit error rate on the fading channel with a delay line demodulator is derived and compared with the error rate for the Gaussian channel. The increase in bit error rate over that of the Gaussian channel is determined along with the power penalty caused by the fading. In addition, the effects of several channel parameters on the probability of bit error are determined.
68

Inverse Synthetic Array Reconciliation Tomography

Cavanaugh, Andrew F 06 May 2013 (has links)
This dissertation introduces Inverse Synthetic Array Reconciliation Tomography (ISART), an algorithm that exploits the short-time accuracy of inertial navigation systems (INS) and the time-stability of radio frequency (RF) positioning algorithms to achieve a high level of positioning accuracy. Novel array processing and data fusion techniques are employed to acheive performance far greater than RF and INS algorithms previously developed. This research is directed toward addressing the need for a viable tracking solution for firefighters and other first responders in urban and indoor environments. The approaches in this work are fundamentally different from other RF-INS fusion approaches, in the way we combine INS data with RF data. Rather than simply fusing the measurements from two systems that are estimating position (or states directly related to position) we use the inertial navigation data to improve the accuracy of our RF estimates at the signal level, before integrating them into an overall fusion system through the use of an extended Kalman filter (EKF). This work outlines the theoretical basis for ISART, and shows the results of simulations that support the claimed accuracy improvement of the ISART algorithm over existing methods. The viability of ISART in real world settings is then examined through the results of three field tests what were conducted in support of this research.
69

On Limits of Multi-Antenna Wireless Communications in Spatially Selective Channels

Pollock, Tony Steven, tony.pollock@nicta.com.au January 2003 (has links)
Multiple-Input Multiple-Output (MIMO) communications systems using multiantenna arrays simultaneously during transmission and reception have generated significant interest in recent years. Theoretical work in the mid 1990?s showed the potential for significant capacity increases in wireless channels via spatial multiplexing with sparse antenna arrays and rich scattering environments. However, in reality the capacity is significantly reduced when the antennas are placed close together, or the scattering environment is sparse, causing the signals received by different antennas to become correlated, corresponding to a reduction of the effective number of sub-channels between transmit and receive antennas. By introducing the previously ignored spatial aspects, namely the antenna array geometry and the scattering environment, into a novel channel model new bounds and fundamental limitations to MIMO capacity are derived for spatially constrained, or spatially selective, channels. A theoretically derived capacity saturation point is shown to exist for spatially selective MIMO channels, at which there is no capacity growth with increasing numbers of antennas. Furthermore, it is shown that this saturation point is dependent on the shape, size and orientation of the spatial volumes containing the antenna arrays along with the properties of the scattering environment. This result leads to the definition of an intrinsic capacity between separate spatial volumes in a continuous scattering environment, which is an upper limit to communication between the volumes that can not be increased with increasing numbers of antennas within. It is shown that there exists a fundamental limit to the information theoretic capacity between two continuous volumes in space, where using antenna arrays is simply one choice of implementation of a more general spatial signal processing underlying all wireless communication systems.
70

Communication-Aware Motion Planning for Mobile Robots

Minnema Lindhé, Magnus January 2012 (has links)
Mobile robots have found numerous applications in recent years, in areas such as consumer robotics, environmental monitoring, security and transportation. For information dissemination, multi-robot cooperation or operator intervention, reliable communications are important. The combination of communication constraints with other requirements in robotics, such as navigation and obstacle avoidance is called communication-aware motion planning. To facilitate integration, communication-aware methods should fit into traditional layered architectures of motion planning. This thesis contains two main contributions, applicable to such an architecture. The first contribution is to develop strategies for exploiting multipath fading while following a reference trajectory. By deviating from the reference, a robot can stop and communicate at positions with high signal strength, trading tracking performance for link quality. We formulate this problem in three different ways: First we maximize the link quality, subject to deterministic bounds on the tracking error. We control the velocity based on the position and channel quality. Second, we consider probabilistic tracking error bounds and develop a cascaded control architecture that performs time-triggered stopping while regulating the tracking error. Third, we formulate a hybrid optimal control problem, switching between standing still to communicate and driving to improve tracking. The resulting channel quality is analyzed and we perform extensive experiments to validate the communication model and compare the proposed methods to the nominal case of driving at constant velocity. The results show good agreement with the model and improvements of over 100% in the throughput when the channel quality is low. The second contribution is to plan velocities for a group of N robots, moving along pre-determined paths through an obstacle field. Robots can only communicate if they have an unobstructed line of sight, and the problem is to maintain connectivity while traversing the paths. This is mapped to motion planning in an N-dimensional configuration space. We propose and investigate two solutions, using a rapidly exploring random tree (RRT) and an exact method inspired by cell decomposition. The RRT method scales better with the problem size than the exact method, which has a worst-case time complexity that is exponential in the number of obstacles. But the randomization in the RRT method makes it difficult to set a timeout for the solver, which runs forever if a problem instance is unsolvable. The exact method, on the other hand, detects unsolvable problem instances in finite time. The thesis demonstrates, both in theory and experiments, that mobile robots can improve communications by planning trajectories that maintain visual connectivity, or by exploiting multipath fading when there is no line of sight. The proposed methods are well suited for integration in a layered motion planning architecture. / QC 20120117

Page generated in 0.0308 seconds