Spelling suggestions: "subject:"multiphase"" "subject:"multiphases""
151 |
Modeling of wet gas compression in twin-screw multiphase pumpXu, Jian 15 May 2009 (has links)
Twin-screw multiphase pumps experience a severe decrease in efficiency, even
the breakdown of pumping function, when operating under wet gas conditions.
Additionally, field operations have revealed significant vibration and thermal issues
which can lead to damage of the pump internals and expensive repairs and maintenance.
There are limited models simulating the performance of twin-screw pump under these
conditions. This project develops a pump-user oriented simulator to model the
performance of twin-screw pumps under wet gas conditions. Experimental testing is
conducted to verify the simulation results. Based on the simulations, an innovative
solution is presented to improve the efficiency and prevent the breakdown of pumping
function.
A new model is developed based upon a previous Texas A&M twin-screw pump
model. In this model, both the gas slip and liquid slip in the pump clearances are
simulated. The mechanical model is coupled with a thermodynamic model to predict the
pressure and temperature distribution along the screws. The comparison of experimental data and the predictions of both isothermal and non-isothermal models show a better
match than previous models with Gas Volume Fraction (GVF) 95% and 98%.
Compatible with the previous Texas A&M twin-screw pump model, this model can be
used to simulate the twin-screw pump performance with GVF from 0% to 99%.
Based on the effect of liquid viscosity, a novel solution is investigated with the
newly developed model to improve the efficiency and reliability of twin-screw pump
performance with GVF higher than 94%. The solution is to inject high viscosity liquid
directly into the twin-screw pump. After the simulations of several different scenarios
with various liquid injection rates and injection positions, we conclude that the
volumetric efficiency increases with increasing liquid viscosity and injecting liquid in
the suction is suggested.
|
152 |
Reduced order modeling for transport phenomena based on proper orthogonal decompositionYuan, Tao 17 February 2005 (has links)
In this thesis, a reduced order model (ROM) based on the proper orthogonal decomposition (POD) for the transport phenomena in fluidized beds has been developed. The reduced order model is tested first on a gas-only flow. Two different strategies and implementations are described for this case. Next, a ROM for a two-dimensional gas-solids fluidized bed is presented. A ROM is developed for a range of diameters of the solids particles. The reconstructed solution is calculated and compared against the full order solution. The differences between the ROM and the full order solution are
smaller than 3.2% if the diameters of the solids particles are in the range of diameters used for POD database generation. Otherwise, the errors
increase up to 10% for the cases presented herein. The computational time of the ROM varied between 25% and 33% of the computational time of the full order solution. The computational speed-up depended on the complexity of the transport phenomena, ROM methodology and reconstruction error. In this thesis, we also investigated the accuracy of the reduced order model based on the POD. When analyzing the accuracy, we used two simple sets of governing partial differential equations: a non-homogeneous Burgers' equation and a system of two coupled Burgers' equations.
|
153 |
Gamma radiation methods for clamp-on multiphase flow meteringBlaney, S. January 2008 (has links)
The development of a cost-effective multiphase flow meter to determine the individual phase flow rates of oil, water and gas was investigated through the exploitation of a single clamp-on gamma densitometer and signal processing techniques. A fast-sampling (250 Hz) gamma densitometer was installed at the top of the 10.5 m high, 108.2 mm internal diameter, stainless steel catenary riser in the Cranfield University multiphase flow test facility. Gamma radiation attenuation data was collected for two photon energy ranges of the caesium-137 radioisotope based densitometer for a range of air, water and oil flow mixtures, spanning the facility’s delivery range. Signal analysis of the gamma densitometer data revealed the presence of quasi-periodic waveforms in the time-varying multiphase flow densities and discriminatory correlations between statistical features of the gamma count data and key multiphase flow parameters. The development of a mechanistic approach to infer the multiphase flow rates from the gamma attenuation information was investigated. A model for the determination of the individual phase flow rates was proposed based on the gamma attenuation levels; while quasi-periodic waveforms identified in the multiphase fluid density were observed to exhibit a strong correlation with the gas and liquid superficial phase velocity parameters at fixed water cuts. Analysis of the use of pattern recognition techniques to correlate the gamma densitometer data with the individual phase superficial velocities and the water cut was undertaken. Two neural network models were developed for comparison: a single multilayer-perceptron and a multilayer hierarchical flow regime dependent model. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma count signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±10% based on flow regime specific correlations.
|
154 |
Experimental study of convective dissolution of carbon dioxide in porous mediaLiang, Yu, active 21st century 03 February 2015 (has links)
Geological carbon dioxide (CO₂) capture and storage in geological formations has the potential to reduce anthropogenic emissions. The viability of technology depends on the long-term security of the geological CO₂ storage. Dissolution of CO₂ into the brine, resulting in stable stratification, has been identified as the key to long-term storage security. The dissolution rate determined by convection in the brine is driven by the increase of brine density with CO₂ saturation. Here we present a new analog laboratory experiment system to characterize convective dissolution in homogeneous porous medium. By understanding the relationship between dissolution and the Rayleigh number in homogeneous porous media, we can evaluate if convective dissolution occurs in the field and, in turn, to estimate the security of geological CO₂ storage fields. The large experimental assembly will allow us to quantify the relationship between convective dynamics and the Rayleigh number of the system, which could be essential to trapping process at Bravo Dome. A series of pictures with high resolution are taken to show the existence and movement of fingers of analog fluid. Also, these pictures are processed, clearly showed the concentration of analog fluid, which is essential to analyze the convective dissolution in detail. We measured the reduction in the convective flux due to hydraulic dispersion effect compared to that in homogeneous media, to determine if convective dissolution is an important trapping process at Bravo Dome. / text
|
155 |
Algorithms for numerical modeling and inversion of multi-phase fluid flow and electromagnetic measurementsAlpak, Faruk Omer 28 August 2008 (has links)
Not available / text
|
156 |
A predictive model for sand production in poorly consolidated sandsKim, Sung Hyun, 1983- 17 February 2011 (has links)
This thesis presents a model for the process of sand production that allows us to predict the stability of wellbores and perforation tunnels as well as mass of sand produced.
Past analytical, numerical, and empirical models on material failure and erosion mechanisms were analyzed. The sand production model incorporates shear and tensile failure mechanisms. A criterion for sand erosion in failed sand was proposed based on a force balance calculation on the sand face. It is shown that failure, post failure sand mechanics and flow-dominated erosion mechanisms are important in the sand production process. The model has a small number of required input parameters that can be directly measured in the lab and does not require the use of empirical correlations for determining sand erosion. The model was implemented in a numerical simulator.
Three different experiments using different materials were simulated and the results were compared to test the model. The model-generated results successfully matched the sand production profiles in experiments. When the post-failure behavior of materials was well-known, the match between the simulation and experiment was excellent. Sensitivity studies on the effect of mechanical stresses, flow rates, cohesion, and permeability show qualitative agreement with experimental observations. In addition, the effect of two-phase flow was presented to emphasize the importance of the water-weakening of the sand. These results show that catastrophic sand production can occur following water breakthrough. Finally the impact of increasing sand cohesion by the use of sand consolidation chemicals was shown to be an effective strategy for preventing sand production. / text
|
157 |
Implementation of full permeability tensor representation in a dual porosity reservoir simulatorLi, Bowei 24 March 2011 (has links)
Not available / text
|
158 |
Simulation and analysis of the multiphase flow and stability of co-extruded layered polymeric filmsChabert, Erwan 28 September 2011 (has links)
The flow and stability of co-extruded layers of different polymers in a forced assembly process is studied computationally to determine the extent of the stable process window and the types of instabilities that occur. Recent advances in layer-multiplying co-extrusion of incompatible polymers have made possible the fabrication of multilayered nanostructures with improved barrier, thermal and mechanical behavior. However, existing layering techniques are very sensitive to mismatches in viscosity and elasticity of the co-extruded polymers which often give rise to layer non-uniformity and flow instabilities, such as encapsulation. Simulations of the flows inside the feedblock and the successive multiplier dies of the multi-layering system are used to track the interface and predict instabilities and degrees of encapsulation as a function of process parameters, primarily the flow rates and rheology of the polymers. Encapsulation is found to be negligible in practice in the feedblock even for large viscosity contrasts and differences in elasticity between the two co-extruded polymers. Encapsulation or pinch-off of interfaces is more severe in the multiplier dies when there the rheologies of the polymers differ. A secondary flow due to the second normal stress differences for non-Newtonian fluids is primarily responsible for the encapsulation. A new multiplier design is proposed and simulated. The pressure drop in the proposed design is half that of the current design, which is useful for extruding highly elastic materials. Further, the degree of encapsulation is also reduced. The results of the simulations are validated with experimental measurements of pressure drop and flow visualization provided by research collaborators. / text
|
159 |
EXISTENCE AND UNIQUENESS OF A TWO DIMENSIONAL FREE STREAMLINE GRAVITY FLOW FOR A LIQUID ISSUING FROM A CONTAINERSuitt, Clifton Bruce, 1942- January 1971 (has links)
No description available.
|
160 |
The orientation state of semi-dilute rigid fibre suspensions in a linearly contracting channelKrochak, Paul Joseph 05 1900 (has links)
This work investigates the effects of long range hydrodynamic fibre-fibre interactions on the orientation state of a semi-dilute, rigid fibre suspension flowing through a linear contracting channel under laminar flow conditions. The effects of fibre-fibre interactions are modeled mathematically, the governing equations solved numerically and the predicted results compared with experimental observations.
The theoretical model is based on the assumption that the orientation state of the suspension can be completely described by a probability distribution function and that fibre-fibre interactions are random in nature, thus giving rise to a diffusion-type process. The orientation distribution evolves spatially according to a Fokker-Plank type equation using closure equations for the rotary diffusion coefficient advanced by either (i) Folgar and Tucker (J. Reinforced Plast. Comp. 3 98–119 1984) or (ii) Koch (Phys. Fluids 7(8) 2086–2088 1995). Each of these two closure models for the rotary diffusion coefficient contains an unknown empirical constant that must be determined from experiments. These were fit to experimental data along the central streamline of the contraction as a function of fibre concentration. The diffusion coefficient was found to first increase with increasing suspension concentration up to a maximum, and then decrease with concentration above this point. This non-monotonic behavior was attributed to fibre flocculation, a mechanism not considered in the relationships for the rotary diffusion coefficient. The theoretical model is then extended to predict fibre orientation over the entire plane of the contraction and the two-way momentum coupling between the fluid and fibre phases were investigated numerically. The results show that the structure of the flow field within the contraction is significantly altered when the fibre phase is considered, demonstrating the non-negligible effect of the momentum exchange between the two phases. Comparison is made between the predicted orientation state of the suspension with experimental observations over the contraction plane. Good agreement was found between the model predictions and the experimental observations except in a small region near the solid boundaries. These near wall discrepancies were attributed to an inability to correctly handle the wall boundary conditions in the fibre orientation model.
|
Page generated in 0.0683 seconds