• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 47
  • 25
  • 23
  • 10
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • Tagged with
  • 507
  • 507
  • 386
  • 327
  • 187
  • 178
  • 135
  • 70
  • 70
  • 63
  • 60
  • 60
  • 59
  • 58
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

A Resource Allocation Method Base on Cross-Entropy Algorithm with Guaranteed QoS in Multi-Cell OFDMA Systems

Hsiao, Shih-Lun 13 January 2012 (has links)
In multi-cell downlink OFDMA radio network system, users in one cell would suffer from the inter-cell interference caused by frequency reuse, namely co-channel interference. For a practical system, the inter-cell interference seriously decreases the quality of communication, especially for cell-edge users. Therefore, some interference management techniques, such as resources allocation, beamforming¡Ketc., will become an important issue in this system. Therefore, how to allocate resources to enhance cell-edge user performance and total system throughput is the major problem of our research. In this thesis, for management the inter-cell interference in multi-cell downlink OFDMA radio network system, a power allocation method based on the Cross-Entropy algorithm is proposed to find the sub-optimal solution and corresponding subcarriers allocation. In the system, it is considered that a sum-rate maximization problem while satisfying the target rate of both cell-edge users and cell-interior users. The simulation results show that the proposed method can effectively reduce interference between cells, and increases the transmission performance of cell-edge users and overall system throughput.
252

Ultra WideBand Impulse Radio in Multiple Access Wireless Communications

Lai, Weei-Shehng 25 July 2004 (has links)
Ultra-Wideband impulse radio (UWB-IR) technology is an attractive method on multi-user for high data rate transmitting structures. In this thesis, we use the ultra wideband (UWB) signal that is modulated by the time-hopping spread spectrum technique in a wireless multiple access environments, and discuss the influences of multiple access interference. We discuss two parts of the influences of multiple access interference in this thesis. The first, we analyze the multiple access interferences on the conventional correlation receiver, and discuss the influences by using the time hopping code on different multiple access structures. The second, we know that the performances of user detection and system capacity would be degraded by the conventional correlation receiver in the multiple access channels. The Probabilistic Data Association(PDA) multi-user detection technology can eliminate multiple access interferences in this part. We will use this method to verify the system performance through the computer simulations, and compare to other multi-user detectors with convention correlation receivers. Finally, the simulation results show that the performance of the PDA multi-user detections is improved when the system is full loaded.
253

Application of Array Processing Techniques to CDMA Multiuser Detection Systems

Chang, Ann-Chen 11 May 2000 (has links)
Several issues on the problems of the adaptive array beamforming and code-division multiple access (CDMA) multiuser detection are investigated in this dissertation. Recently, based on the decomposition of observation vector space into two orthogonal eigenspace, the eigenspace-based (ESB) and the generalized eigenspace-based (GEIB) array signal processing techniques have been widely discussed due to their superior performance over conventional techniques. At first, the purpose of this dissertation is mainly to present robust and efficient algorithms for further enhancing the performance of ESB and GEIB techniques under imperfect and practical operation environments. We also propose a method of corrected steering angles to combat the supersensitivity of eigenanalysis interference canceler (EIC) to source number overestimation and steering angle errors. We analyze the performance of several ESB multiuser detectors, including conventional direct-form detector and generalized sidelobe canceler (GSC) for synchronous CDMA system with and without desired user code mismatch. We also present a way of resolving spreading code mismatch in blind multiuser detection with subspace-based technique. Furthermore, the structure of GSC can be utilized to deal with the case of the desired user's SNR < 0 dB. Next, algorithm for adaptive H¡Û filter has demonstrated the advantage of reduction of sensitivity to modeling error (due to finite tap number) and suitability for arbitrary ambient noise over recursive least squares (RLS) algorithm. However, the computational burden of the H¡Û algorithm is enormous. In order to reduce the computational complexity, subweight partition scheme is employed to an H¡Û-based algorithm. The computation burden of the conventional adaptive H¡Û algorithm can be mitigated with slight performance degradation. The H¡Û-based algorithm is then further extended to the adaptive beamformer and blind multiuser detector. Finally, we present new diversity techniques for multiuser detection under multipath fading channels in asynchronous CDMA systems. The enhanced capacity of diversity for multipath channels can be achieved by appropriately utilizing the constraint matrix and the response vector in multiple constraint minimum variance (MCMV) algorithm. Moreover, the proposed techniques offer gratifying multiple access interference (MAI) suppression. We also incorporate the signal subspace-based projection into MCMV detector, so that the noise enhancement in the MCMV criterion can be reduced.
254

Handoff issues in a transmit diversity system

Jaswal, Kavita 17 February 2005 (has links)
This thesis addresses handoff issues in a WCDMA system with space-time block coded transmit antenna diversity. Soft handoff has traditionally been used in CDMA systems because of its ability to provide an improved link performance due to the inherent macro diversity. Next generation systems will incorporate transmit diversity schemes employing several transmit antennas at the base station. These schemes have been shown to improve downlink transmission performance especially capacity and quality. This research investigates the possibility that the diversity obtained through soft handoff can be compensated for by the diversity obtained in a transmit diversity system with hard handoff. We analyze the system for two performance measures, namely, the probability of bit error and the outage probability, in order to determine whether the improvement in link performance, as a result of transmit diversity in a system with hard handoffs obviates the need for soft handoffs.
255

Pilot Design in Uplink OFDMA Systems

Ho, Hsin-Che 06 August 2008 (has links)
In this thesis, One of the difficulties in the orthogonal frequency division multiple access (OFDMA) systems is the multi-user interference (MUI) induced by the carrier frequency offset (CFO). In sub-band OFDMA systems, each user occupies a consecutive and non-overlapping frequency sub-band. The pilots are usually placed at the edges of a sub-band for frequency synchronization and channel estimation. However, the both frequency synchronization and channel estimation performance are influenced seriously by the multi-user interference (MUI) induced by CFO of other users. The MUI can be reduced by inserting the guard sub-carrier between adjacent users. In this paper, a novel pilot architecture is investigated, which has the same bandwidth efficiency as the conventional guard sub-carrier insertion scheme. In addition, the proposed pilot architecture provides better carrier frequency synchronization and channel estimation performance than conventional pilot assignment. Moreover, this new pilot architecture also has MUI reduction utility.
256

Novel Low-Complexity SLM Schemes for PAPR Reduction in OFDMA Uplink Systems

Xie, Jia-Cheng 10 August 2008 (has links)
One of the major drawbacks of multi-carrier systems is the high peak-to-average power ratio (PAPR) of the transmitted signals. In this paper, the proposed novel low-complexity selective mapping (SLM) schemes are applicable to interleaved-4 orthogonal frequency division multiple access (OFDMA) uplink systems for PAPR reduction. The novel scheme just needs one inverse fast Fourier transform (IFFT) block because that the phases of the transmitted signals in frequency domain are rotated by circular convolution with conversion vectors in time domain. Moreover, a special set of conversion vectors are proposed in novel scheme, which are not only computed with low complexity but also reduce the PAPR effectively. In proposed scheme, different conversion vectors and appropriate subcarriers mapping are picked up for different users. The scheme supplies a practicable low-complexity method for PAPR reduction in interleaved-4 OFDMA uplink systems. Besides, the bit error rate (BER) performance is as good as the SLM scheme.
257

Cooperative Communication with Network Coding

Song, I-lin 21 January 2010 (has links)
To effectively combat MAI and MI in wireless networks, we exploit complementary code technique in this thesis. Terminals in cooperative communication system are not only doing the transmission or relaying, but also involve a novel strategy "network coding" which has been investigated widely. In our work, we aim to combine network coding into the conventional cooperative communication system, but we face certain problems in it. Cooperative system has diversity at the destination, but when network coding operation involved, theoretically, it violate the rules of diversity, since the new signals transmitted by relay are no longer as same as the signals from sources. However, we discover a method to solve this problem, which is using the multiplier in relay nodes to replace the conventional network coding operation- XOR. After creating the network coding-based system, our goal is to achieve diversity in cooperative communication system. In this work, we use MRC (maximum ratio combining) for the performance analysis, which is the optimal strategy. Many math works will be shown in the following chapters.
258

Indoor CDMA capacity using smart antenna base station /

Elfarawi, Shaaban M., January 2000 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2000. / Bibliography: p. 96-104.
259

Complementary metal-oxide-semiconductor frequency conversion techniques for wideband code division multiple access /

Fang, Sher Jiun. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 163-176).
260

Novel adaptive signal processing algorithms for wireless communications : echo cancellation and multiuser detection /

Blunt, Shannon D. January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 137-143). Also available on the Internet.

Page generated in 0.0444 seconds