• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of L1 reconstruction of sparse signals to ambiguity resolution in radar

Shaban, Fahad 13 May 2013 (has links)
The objective of the proposed research is to develop a new algorithm for range and Doppler ambiguity resolution in radar detection data using L1 minimization methods for sparse signals and to investigate the properties of such techniques. This novel approach to ambiguity resolution makes use of the sparse measurement structure of the post-detection data in multiple pulse repetition frequency radars and the resulting equivalence of the computationally intractable L0 minimization and the surrogate L1 minimization methods. The ambiguity resolution problem is cast as a linear system of equations which is then solved for the unique sparse solution in the absence of errors. It is shown that the new technique successfully resolves range and Doppler ambiguities and the recovery is exact in the ideal case of no errors in the system. The behavior of the technique is then investigated in the presence of real world data errors encountered in radar measurement and detection process. Examples of such errors include blind zone effects, collisions, false alarms and missed detections. It is shown that the mathematical model consisting of a linear system of equations developed for the ideal case can be adjusted to account for data errors. Empirical results show that the L1 minimization approach also works well in the presence of errors with minor extensions to the algorithm. Several examples are presented to demonstrate the successful implementation of the new technique for range and Doppler ambiguity resolution in pulse Doppler radars.
2

Ultrafast Echocardiography

Posada, Daniel 08 1900 (has links)
Grâce à son accessibilité, sa polyvalence et sa sécurité, l'échocardiographie est devenue la technique d'imagerie la plus utilisée pour évaluer la fonction cardiaque. Au vu du succès de l'échographie ultrarapide par ondes planes des techniques similaires pour augmenter la résolution temporelle en échocardiographie ont été mise en oeuvre. L’augmentation de la résolution temporelle de l’échographie cardiaque au-delà des valeurs actuellement atteignables (~ 60 à 80 images par secondes), pourrait être utilisé pour améliorer d’autres caractéristiques de l'échocardiographie, comme par exemple élargir la plage de vitesses détectables en imagerie Doppler couleur limitées par la valeur de Nyquist. Nous avons étudié l'échocardiographie ultrarapide en utilisant des fronts d’ondes ultrasonores divergentes. La résolution temporelle atteinte par la méthode d'ondes divergentes a permis d’améliorer les capacités des modes d’échocardiographie en mode B et en Doppler couleur. La résolution temporelle de la méthode mode B a été augmentée jusqu'à 633 images par secondes, tout en gardant une qualité d'image comparable à celle de la méthode d’échocardiographie conventionnelle. La vitesse de Nyquist de la méthode Doppler couleur a été multipliée jusqu'à 6 fois au delà de la limite conventionnelle en utilisant une technique inspirée de l’imagerie radar; l’implémentation de cette méthode n’aurait pas été possible sans l’utilisation de fronts d’ondes divergentes. Les performances avantageuses de la méthode d'échocardiographie ultrarapide sont supportées par plusieurs résultats in vitro et in vivo inclus dans ce manuscrit. / Because of its low cost, versatility and safety, echocardiography has become the most common imaging technique to assess the cardiac function. The recent success of ultrafast ultrasound plane wave imaging has prompted the implementation of similar approaches to enhance the echocardiography temporal resolution. The ability to enhance the echocardiography frame rate beyond conventional values (~60 to 80 fps) would positively impact other echocardiography features, e.g. broaden the color Doppler unambiguous velocity range. We investigated the ultrafast echocardiography imaging approach using ultrasound diverging waves. The high frame rate offered by the diverging wave method was used to enhance the capabilities of both B-mode and color Doppler echocardiography. The B-mode temporal resolution was increased to 633 fps whilst the image quality was kept almost unchanged with reference to the conventional echocardiography technique. The color Doppler Nyquist velocity range was extended to up to 6 times the conventional limit using a weather radar imaging approach; such an approach could not have been implemented without using the ultrafast diverging wave imaging technique. The advantageous performance of the ultrafast diverging wave echocardiography approach is supported by multiple in vitro and in vivo results included in this manuscript.

Page generated in 0.0401 seconds