• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of L1 reconstruction of sparse signals to ambiguity resolution in radar

Shaban, Fahad 13 May 2013 (has links)
The objective of the proposed research is to develop a new algorithm for range and Doppler ambiguity resolution in radar detection data using L1 minimization methods for sparse signals and to investigate the properties of such techniques. This novel approach to ambiguity resolution makes use of the sparse measurement structure of the post-detection data in multiple pulse repetition frequency radars and the resulting equivalence of the computationally intractable L0 minimization and the surrogate L1 minimization methods. The ambiguity resolution problem is cast as a linear system of equations which is then solved for the unique sparse solution in the absence of errors. It is shown that the new technique successfully resolves range and Doppler ambiguities and the recovery is exact in the ideal case of no errors in the system. The behavior of the technique is then investigated in the presence of real world data errors encountered in radar measurement and detection process. Examples of such errors include blind zone effects, collisions, false alarms and missed detections. It is shown that the mathematical model consisting of a linear system of equations developed for the ideal case can be adjusted to account for data errors. Empirical results show that the L1 minimization approach also works well in the presence of errors with minor extensions to the algorithm. Several examples are presented to demonstrate the successful implementation of the new technique for range and Doppler ambiguity resolution in pulse Doppler radars.
2

Localisation à haute résolution de cibles lentes et de petite taille à l’aide de radars de sol hautement ambigus / High resolution localization of small and slow-moving targets with highly ambiguous ground-based radars

Hadded Aouchiche, Linda 14 March 2018 (has links)
Cette thèse a pour objectif d’améliorer la détection de cibles lentes et de faible réflectivité dans le cas de radars de sol Doppler pulsés à fréquence de récurrence intermédiaire. Ces radars, hautement ambigus en distance et en vitesse, émettent de façon consécutive des trains d’impulsions de périodes de récurrence différentes, afin de lever les ambiguïtés.L’émission successive de trains d’impulsions de courtes durées conduit à une faible capacité de séparation sur l’axe Doppler. Par conséquent, les objets lents de faible réflectivité, comme les drones, sont difficiles à distinguer du fouillis de sol. A l’issue du traitement Doppler conventionnel qui vise à éliminer les échos de fouillis, les performances de détection de ces cibles sont fortement atténuées. Pour palier à ce problème, nous avons développé une nouvelle chaîne de traitement 2D distance/Doppler pour les radars à fréquence de récurrence intermédiaire. Celle-ci s’appuie, en premier lieu, sur un algorithme itératif permettant d’exploiter la diversité temporelle entre les trains d’impulsions émis, afin de lever les ambiguïtés en distance et en vitesse et de détecter les cibles rapides exo-fouillis. La détection des cibles lentes endo-fouillis est ensuite réalisée à l’aide d’un détecteur adaptatif. Une nouvelle approche, permettant d’associer les signaux issus de rafales de caractéristiques différentes pour l’estimation de la matrice de covariance, est utilisée en vue d’optimiser les performances de détection. Les différents tests effectués sur données simulées et réelles pour évaluer les traitements développés et la nouvelle chaîne de traitement, ont montré l’intérêt de ces derniers. / The aim of this thesis is to enhance the detection of slow-moving targets with low reflectivity in case of ground-based pulse Doppler radars operating in intermediate pulse repetition frequency. These radars are highly ambiguous in range and Doppler. To resolve ambiguities, they transmit successively short pulse trains with different pulse repetition intervals. The transmission of short pulse trains results in a poor Doppler resolution. As consequence, slow-moving targets with low reflectivity, such as unmanned aerial vehicles, are buried into clutter returns. One of the main drawbacks of the classical Doppler processing of intermediate pulse repetition frequency pulse Doppler radars is the low detection performance of small and slowly-moving targets after ground clutter rejection. In order to address this problem, a two-dimensional range / Dopper processing chain including new techniques is proposed in this thesis. First, an iterative algorithm allows to exploit transmitted pulse trains temporal diversity to resolve range and Doppler ambiguities and detect fast, exo-clutter, targets. The detection of slow, endo-clutter, targets is then performed by an adaptive detection scheme. It uses a new covariance matrix estimation approach allowing the association of pulse trains with different characteristics in order to enhance detection performance. The different tests performed on simulated and real data to evaluate the proposed techniques and the new processing chain have shown their effectiveness.

Page generated in 0.054 seconds